THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 5
 Due Date: 29th February 2024

Compulsory Part

1. Let $G=\{1,2,4,5,7,8\}$. Define a binary operation $*$ on G as follows:

$$
l * k=\overline{l \cdot k}
$$

where • represents the multiplication of integers, and for any $n \in \mathbb{Z}$ the symbol \bar{n} denotes the remainder (in $\mathbb{Z}_{9}=\{0,1,2, \ldots, 8\}$) of the division of n by 9 . Given that $G=(G, *)$ is group. Show that G is isomorphic to \mathbb{Z}_{6}.
2. Let $\phi: G \longrightarrow G^{\prime}$ be a bijective group homomorphism. Show that the inverse map $\phi^{-1}: G^{\prime} \longrightarrow G$ is also a group homomorphism.
3. Let:

$$
G=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\right\}
$$

(a) Show that $(G, *)$ is a group, where $*$ is matrix multiplication.
(b) Show that $(G, *)$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
4. Determine if the following groups are isomorphic.
(a) The additive group $(\mathbb{R},+)$ and the multiplicative group $\left(\mathbb{R}_{>0}, \cdot\right)$.
(b) The additive group $(\mathbb{Q},+)$ and the multiplicative group $(\mathbb{Q}>0, \cdot)$.
5. Determine if $\mathbb{Z}_{2} \times \mathbb{Z}_{12}$ is isomorphic to $\mathbb{Z}_{4} \times \mathbb{Z}_{6}$. Justify your assertion.
6. Let G be a group.
(a) Show that the map

$$
\phi: G \longrightarrow G, \quad g \mapsto g^{-1}
$$

is a group homomorphism if and only if G is abelian.
(b) Show that the map

$$
\phi: G \longrightarrow G, \quad g \mapsto g^{2}
$$

is a group homomorphism if and only if G is abelian.
7. Let G be a group.
(a) An isomorphism $\sigma: G \rightarrow G$ from G onto itself is called an automorphism of G. Show that the set $\operatorname{Aut}(G)$ of automorphisms of G forms a group under composition.
(b) Show that, for any $g \in G$, the map $i_{g}: G \rightarrow G$ defined by $i_{g}(a)=g a g^{-1}$ for any $a \in G$ is an automorphism of G. The automorphism i_{g} is called an inner automorphism of G.
(c) Prove that the set $\operatorname{Inn}(G)$ of inner automorphisms of G is a normal subgroup of $\operatorname{Aut}(G)$.

Optional Part

1. Let $G=\{1,5,7,11,13,17,19,23\}$. Define a binary operation $*$ on G as follows:

$$
l * k=\overline{l \cdot k}
$$

where • represents the multiplication of integers, and for any $n \in \mathbb{Z}$ the symbol \bar{n} denotes the remainder of the division of n by 24 .
(a) Given that $G=(G, *)$ is group, show that G is not isomorphic to \mathbb{Z}_{8}.
(b) G is isomorphic to one of the following groups. Make a guess which one.
i. $S_{2} \times \mathbb{Z}_{4}$.
ii. $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$.
iii. $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
2. Let G, G^{\prime} be isomorphic cyclic groups. Show that for any generator g of G (i.e. $G=\langle g\rangle$) and any group isomorphism $\phi: G \longrightarrow G^{\prime}$, the element $\phi(g)$ is a generator of G^{\prime}.
3. Show that any non-abelian group of order 6 is isomorphic to S_{3}.
4. Let n be a positive integer. Define $\phi:(\mathbb{Z},+) \longrightarrow\left(\mathbb{Z}_{n},+_{n}\right)$ as follows:

$$
\phi(k)=\bar{k}, \quad k \in \mathbb{Z}
$$

where \bar{k} denotes the remainder of the division of k by n.
(a) Show that ϕ is a group homomorphism.
(b) Find $\operatorname{ker} \phi$ and the index $[\mathbb{Z}: \operatorname{ker} \phi]$.
(c) Find all group homomorphism(s) $\psi: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}$, if any exists.
5. Find the total number of group isomorphisms:
(a) from U_{5} to U_{5}.
(b) from U_{12} to \mathbb{Z}_{12}.
6. Define a relation \cong on groups as follows:

$$
G \cong G^{\prime} \quad \text { if } G \text { is isomorphic to } G^{\prime}
$$

Show that \cong is an equivalence relation.
7. (a) Let G be a group and $S \subset G$ be a generating set for G, i.e. we have $G=\langle S\rangle$. Let $\lambda: G \rightarrow G^{\prime}$ and $\mu: G \rightarrow G^{\prime}$ be two homomorphisms from G into a group G^{\prime} such that $\lambda(s)=\mu(s)$ for any $s \in S$. Show that $\lambda=\mu$.
(b) Use (a) to compute the order of $\operatorname{Aut}\left(\mathbb{Z}_{15}\right)$. (More generally, what is the order of the automorphism group of a cyclic group of order n ?)

