THE CHINESE UNIVERSITY OF HONG KONG

Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 5

Due Date: 29th February 2024

Compulsory Part

1. Let $G = \{1, 2, 4, 5, 7, 8\}$. Define a binary operation * on G as follows:

$$l * k = \overline{l \cdot k},$$

where \cdot represents the multiplication of integers, and for any $n \in \mathbb{Z}$ the symbol \overline{n} denotes the remainder (in $\mathbb{Z}_9 = \{0, 1, 2, \dots, 8\}$) of the division of n by 9. Given that G = (G, *) is group. Show that G is isomorphic to \mathbb{Z}_6 .

- 2. Let $\phi: G \longrightarrow G'$ be a bijective group homomorphism. Show that the inverse map $\phi^{-1}: G' \longrightarrow G$ is also a group homomorphism.
- 3. Let:

$$G = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \right\}.$$

- (a) Show that (G, *) is a group, where * is matrix multiplication.
- (b) Show that (G, *) is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 4. Determine if the following groups are isomorphic.
 - (a) The additive group $(\mathbb{R}, +)$ and the multiplicative group $(\mathbb{R}_{>0}, \cdot)$.
 - (b) The additive group $(\mathbb{Q}, +)$ and the multiplicative group $(\mathbb{Q}_{>0}, \cdot)$.
- 5. Determine if $\mathbb{Z}_2 \times \mathbb{Z}_{12}$ is isomorphic to $\mathbb{Z}_4 \times \mathbb{Z}_6$. Justify your assertion.
- 6. Let G be a group.
 - (a) Show that the map

$$\phi: G \longrightarrow G, \quad g \mapsto g^{-1}$$

is a group homomorphism if and only if ${\cal G}$ is abelian.

(b) Show that the map

$$\phi: G \longrightarrow G, \quad g \mapsto g^2$$

is a group homomorphism if and only if G is abelian.

- 7. Let G be a group.
 - (a) An isomorphism $\sigma: G \to G$ from G onto itself is called an **automorphism** of G. Show that the set $\operatorname{Aut}(G)$ of automorphisms of G forms a group under composition.

- (b) Show that, for any $g \in G$, the map $i_g : G \to G$ defined by $i_g(a) = gag^{-1}$ for any $a \in G$ is an automorphism of G. The automorphism i_g is called an **inner automorphism** of G.
- (c) Prove that the set Inn(G) of inner automorphisms of G is a normal subgroup of Aut(G).

Optional Part

1. Let $G = \{1, 5, 7, 11, 13, 17, 19, 23\}$. Define a binary operation * on G as follows:

$$l * k = \overline{l \cdot k}$$

where \cdot represents the multiplication of integers, and for any $n \in \mathbb{Z}$ the symbol \overline{n} denotes the remainder of the division of n by 24.

- (a) Given that G = (G, *) is group, show that G is *not* isomorphic to \mathbb{Z}_8 .
- (b) G is isomorphic to one of the following groups. Make a guess which one.
 - i. $S_2 \times \mathbb{Z}_4$.
 - ii. $\mathbb{Z}_3 \times \mathbb{Z}_5$.
 - iii. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 2. Let G, G' be isomorphic cyclic groups. Show that for any generator g of G (i.e. $G = \langle g \rangle$) and any group isomorphism $\phi : G \longrightarrow G'$, the element $\phi(g)$ is a generator of G'.
- 3. Show that any non-abelian group of order 6 is isomorphic to S_3 .
- 4. Let n be a positive integer. Define $\phi: (\mathbb{Z}, +) \longrightarrow (\mathbb{Z}_n, +_n)$ as follows:

$$\phi(k) = \overline{k}, \quad k \in \mathbb{Z},$$

where \overline{k} denotes the remainder of the division of k by n.

- (a) Show that ϕ is a group homomorphism.
- (b) Find $\ker \phi$ and the index $[\mathbb{Z} : \ker \phi]$.
- (c) Find all group homomorphism(s) $\psi: \mathbb{Z}_n \longrightarrow \mathbb{Z}$, if any exists.
- 5. Find the total number of group isomorphisms:
 - (a) from U_5 to U_5 .
 - (b) from U_{12} to \mathbb{Z}_{12} .
- 6. Define a relation \cong on groups as follows:

$$G \cong G'$$
 if G is isomorphic to G' ,

Show that \cong is an equivalence relation.

- 7. (a) Let G be a group and $S \subset G$ be a generating set for G, i.e. we have $G = \langle S \rangle$. Let $\lambda : G \to G'$ and $\mu : G \to G'$ be two homomorphisms from G into a group G' such that $\lambda(s) = \mu(s)$ for any $s \in S$. Show that $\lambda = \mu$.
 - (b) Use (a) to compute the order of $\operatorname{Aut}(\mathbb{Z}_{15})$. (More generally, what is the order of the automorphism group of a cyclic group of order n?)