THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 4
 Due Date: 22nd February 2024

Compulsory Part

1. Write down all the cosets of the following subgroups
(a) $\langle 4\rangle \leq \mathbb{Z}$.
(b) $\langle 4\rangle \leq \mathbb{Z}_{12}$.
(c) $\langle s\rangle \leq D_{n}$, where s is any reflection.
2. Find a cyclic subgroup of order 4 in S_{4}, and then give a list of its left coset representatives in S_{4}.
(An element a in a group G is a called a representative of a left coset S of a subgroup H of G if $S=a H$. Note that a is a representative of S if and only if $a \in S$.)
3. Let G be a group of order $p q$, where p and q are (not necessarily distinct) prime numbers. Show that every proper subgroup of G is cyclic.
4. Let H be a subgroup of index 2 in a group G. Show that every left coset of H is also a right coset of H. Hence an index 2 subgroup must be normal.
5. Let G be a group and H, K be subgroups of G such that $K<H<G$. Suppose that $[G: H]$ and $[H: K]$ are finite. Show that $[G: K]$ is finite and we have

$$
[G: K]=[G: H][H: K] .
$$

6. Let H and K be subgroups of finite index in a group G, and suppose that $[G: H]=m$ and $[G: K]=n$. Prove that $\operatorname{lcm}(m, n) \leq[G: H \cap K] \leq m n$. Hence deduce that if m and n are relatively prime, then $[G: H \cap K]=[G: H][G: K]$.

Optional Part

1. Recall the definition of the quaternion group:

$$
Q=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

where the group operation is written multiplicatively,

$$
(-1)^{2}=1, i^{2}=j^{2}=k^{2}=i j k=-1
$$

the symbol 1 denotes the identity element, and -1 commutes with every element of the group.
Consider the cyclic subgroup $H=\langle i\rangle$ of Q. Find $[Q: H]$, and give a list of representatives of the left cosets of H in Q.
2. Consider the dihedral group $D_{6}=\left\{r_{0}, r_{1}, \ldots, r_{5}, s_{1}, s_{2}, \ldots, s_{6}\right\}$, where r_{0} is the identity element, each r_{k} corresponds to the anticlockwise rotation by the angle of $2 \pi k / 6$, and the s_{k} 's are reflections.
(a) Find a subgroup of order 4 in D_{6}, if it exists.
(b) Find a non-cyclic subgroup of order 6 in D_{6}, if it exists.
3. Prove that a group with at least 2 elements but containing no proper nontrivial subgroups must be cyclic and of prime order.
4. Let G be a group, and H be a subgroup of G such that its left cosets and right cosets give the same partition of G. Prove that H is normal in G.
5. Let G be a group and n be a positive integer. Let $H \leq G$ be the subgroup generated by all the order n elements in G. Prove that H is normal.

