THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 3 Due Date: 8th February 2024

Compulsory Part

- 1. Determine whether the given subset is a subgroup (if it is, give a proof; if it is not, explain why):
 - (a) The set $i\mathbb{R}$ of all purely imaginary numbers inside \mathbb{C} .
 - (b) The set $\{z \in \mathbb{C} : z^m = 1\}$ of *m*-th roots of unity inside the unit circle $U = \{z \in \mathbb{C} : |z| = 1\}$.
 - (c) The set of $n \times n$ matrices with determinant -1 inside $GL(n, \mathbb{R})$.
 - (d) The set of $n \times n$ matrices M such that $M^T M = I$, where M^T denotes the transpose of M and I is the $n \times n$ identity matrix, inside $GL(n, \mathbb{R})$.
- 2. Consider the cyclic group \mathbb{Z}_{20} .
 - (a) Write down all the generators of \mathbb{Z}_{20} .
 - (b) List all the subgroups of \mathbb{Z}_{20} , and for each subgroup, compute its order and write down all its generators.
- 3. Let G be a group. Show that a *finite* nonempty subset H of G is a subgroup of G if and only if it is closed under the group operation of G (i.e. $ab \in H$ for all $a, b \in H$).
- 4. Let H and K be subgroups of an abelian group G. Show that

$$\{hk: h \in H \text{ and } k \in K\}$$

is also a subgroup of G.

Give an example to show that this is not the case when G is nonabelian.

5. In the lecture notes, we defined the subgroup generated by a nonempty subset S in a group G as the set

$$\langle S \rangle := \{ a_1^{m_1} a_2^{m_2} \cdots a_n^{m_n} : n \in \mathbb{N}, a_i \in S, m_i \in \mathbb{Z} \}.$$

Prove rigorously that $\langle S \rangle$ is the intersection of all subgroups in G containing H, i.e.

$$\langle S \rangle = \bigcap_{\{H: \ S \subset H < G\}} H.$$

6. Let G be an abelian group. Show that the set H consisting of those elements of G which have finite orders is a subgroup of G.

Optional Part

- 1. Determine whether the given subset is a subgroup (if it is, give a proof; if it is not, explain why):
 - (a) The set $e\mathbb{Q}$ of rational multiples of the number e inside \mathbb{R} .
 - (b) The set $\{\pi^n : n \in \mathbb{Z}\}$ inside \mathbb{R} .
 - (c) The set of diagonal $n \times n$ matrices with no zeros on the diagonal inside $GL(n, \mathbb{R})$.
 - (d) The set of $n \times n$ matrices with determinant ± 1 inside $GL(n, \mathbb{R})$.
- 2. Express each element in S_3 as a product of powers of (123) and (12) (e.g. (23) = $(123)^2(12)$), if possible.
- 3. In S_6 , how many subgroups are of
 - order 5?
 - order 3?
- 4. Find a non-cyclic subgroup of order 4 in S_4 , if it exists. If it does not exist, explain why not.
- 5. Let *n* be an integer larger than or equal to 4. Let *r* be the anticlockwise rotation by $2\pi/n$ in the dihedral group D_n . Let *s* be a fixed reflection in D_n . Find the order of the subgroup $H = \langle r^2, s \rangle$ in D_n if:
 - (a) n is odd.
 - (b) n is even.
- 6. Show that a group with infinitely many elements has infinitely many subgroups.