THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 3
 Due Date: 8th February 2024

Compulsory Part

1. Determine whether the given subset is a subgroup (if it is, give a proof; if it is not, explain why):
(a) The set $\mathbf{i} \mathbb{R}$ of all purely imaginary numbers inside \mathbb{C}.
(b) The set $\left\{z \in \mathbb{C}: z^{m}=1\right\}$ of m-th roots of unity inside the unit circle $U=\{z \in \mathbb{C}$: $|z|=1\}$.
(c) The set of $n \times n$ matrices with determinant -1 inside $\operatorname{GL}(n, \mathbb{R})$.
(d) The set of $n \times n$ matrices M such that $M^{T} M=I$, where M^{T} denotes the transpose of M and I is the $n \times n$ identity matrix, inside $\operatorname{GL}(n, \mathbb{R})$.
2. Consider the cyclic group \mathbb{Z}_{20}.
(a) Write down all the generators of \mathbb{Z}_{20}.
(b) List all the subgroups of \mathbb{Z}_{20}, and for each subgroup, compute its order and write down all its generators.
3. Let G be a group. Show that a finite nonempty subset H of G is a subgroup of G if and only if it is closed under the group operation of G (i.e. $a b \in H$ for all $a, b \in H$).
4. Let H and K be subgroups of an abelian group G. Show that

$$
\{h k: h \in H \text { and } k \in K\}
$$

is also a subgroup of G.
Give an example to show that this is not the case when G is nonabelian.
5. In the lecture notes, we defined the subgroup generated by a nonempty subset S in a group G as the set

$$
\langle S\rangle:=\left\{a_{1}^{m_{1}} a_{2}^{m_{2}} \cdots a_{n}^{m_{n}}: n \in \mathbb{N}, a_{i} \in S, m_{i} \in \mathbb{Z}\right\} .
$$

Prove rigorously that $\langle S\rangle$ is the intersection of all subgroups in G containing H, i.e.

$$
\langle S\rangle=\bigcap_{\{H: S \subset H<G\}} H
$$

6. Let G be an abelian group. Show that the set H consisting of those elements of G which have finite orders is a subgroup of G.

Optional Part

1. Determine whether the given subset is a subgroup (if it is, give a proof; if it is not, explain why):
(a) The set $e \mathbb{Q}$ of rational multiples of the number e inside \mathbb{R}.
(b) The set $\left\{\pi^{n}: n \in \mathbb{Z}\right\}$ inside \mathbb{R}.
(c) The set of diagonal $n \times n$ matrices with no zeros on the diagonal inside $\operatorname{GL}(n, \mathbb{R})$.
(d) The set of $n \times n$ matrices with determinant ± 1 inside $\mathrm{GL}(n, \mathbb{R})$.
2. Express each element in S_{3} as a product of powers of (123) and (12) (e.g. (23) $=$ $(123)^{2}(12)$), if possible.
3. In S_{6}, how many subgroups are of

- order 5 ?
- order 3 ?

4. Find a non-cyclic subgroup of order 4 in S_{4}, if it exists. If it does not exist, explain why not.
5. Let n be an integer larger than or equal to 4 . Let r be the anticlockwise rotation by $2 \pi / n$ in the dihedral group D_{n}. Let s be a fixed reflection in D_{n}. Find the order of the subgroup $H=\left\langle r^{2}, s\right\rangle$ in D_{n} if:
(a) n is odd.
(b) n is even.
6. Show that a group with infinitely many elements has infinitely many subgroups.
