THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 2
 Due Date: 1st February 2024

Compulsory Part

1. Let $\omega=e^{\pi i / 12} \in \mathbb{C}$. Find the order of $\omega^{8}, \omega^{13}, \omega^{22}$ and ω^{2078} respectively as elements in the multiplicative group \mathbb{C}^{\times}of the complex number.
2. Consider the special linear group $\operatorname{SL}(2, \mathbb{R})$.
(a) Find an element of order 2 in $\operatorname{SL}(2, \mathbb{R})$.
(b) Find an element of order 3 in $\operatorname{SL}(2, \mathbb{R})$.
(c) Find an element of infinite order in $\operatorname{SL}(2, \mathbb{R})$.
3. Let G be a group. Show that for all $a, b \in G$ such that $|a b|$ is finite, we have $|a b|=|b a|$.
4. Let $\mu_{1}, \mu_{2} \in S_{n}$ be two disjoint cycles. Using the fact that disjoint cycles commute, show that

$$
\left|\mu_{1} \mu_{2}\right|=\operatorname{lcm}\left(\left|\mu_{1}\right|,\left|\mu_{2}\right|\right)
$$

More generally, show by induction that if $\mu_{1}, \mu_{2}, \ldots, \mu_{r} \in S_{n}$ are disjoint cycles, then

$$
\left|\mu_{1} \mu_{2} \cdots \mu_{r}\right|=\operatorname{lcm}\left(k_{1}, k_{2}, \ldots, k_{r}\right),
$$

where $k_{i}=\left|\mu_{i}\right|$ for $i=1,2, \ldots, r$.
5. How many elements are of order 2 in D_{6} ?
6. Let G be a finite group with an even number of elements. Show that there must be an order 2 element $a \in G$.

Optional Part

1. Let a, b be elements of a group G. Suppose a has order 5 and $a^{3} b=b a^{3}$. Prove that $a b=b a$.
2. By definition, the orthogonal group $\mathrm{O}(2, \mathbb{R})$ consists of real 2×2 matrices A which satisfy the condition

$$
A^{t} A=A A^{t}=I
$$

where A^{t} denotes the transpose of A, and I is the 2×2 identity matrix.
(a) Show that $\mathrm{O}(2, \mathbb{R})$ is a group under matrix multiplication.
(b) Find an element of order 2 in $\mathrm{O}(2, \mathbb{R})$.
(c) Find an element of order 3 in $\mathrm{O}(2, \mathbb{R})$.
3. Find the order of the following elements in S_{7} :
(a) (1325).
(b) $(1325)(47)$.
(c) $(1325)(647)$.
(d) $(35)(46)(37)(32)$.
4. Consider the permutations

$$
\sigma=(1264)(2513), \tau=\left(\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
4 & 2 & 7 & 5 & 1 & 3 & 6
\end{array}\right) \in S_{7}
$$

(a) Express σ and τ as
i. a product of transpositions, and
ii. a product of disjoint cycles.
(b) Compute $|\sigma|,|\tau|$ and $|\sigma \tau|$.
5. (a) How many elements are of order 3 in S_{5} ?
(b) How many elements are of order 4 in S_{6} ?
(c) How many elements are of order 3 in S_{7} ?
6. Consider the dihedral group D_{n}, where n is an integer greater than 2 . For $j=0,1,2, \ldots, n-$ 1 , let r_{j} denote the anticlockwise rotation about the origin by $2 \pi j / n$.
(a) Show that for any $k \in \mathbb{N}$, rotation $r \in D_{n}$ and reflection $s \in D_{n}$, we have

$$
s r^{k} s=(s r s)^{k}
$$

(b) Show that for any reflection $s \in D_{n}$ and any rotation $r \in D_{n}$, we have

$$
s r s=r^{-1}
$$

(Hint: First prove the identities for one particular reflection s, then use the fact that any other reflection s^{\prime} is equal to $s r^{\prime}$ for some rotation $r^{\prime} \in D_{n}$.)

