THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 2 Due Date: 1st February 2024

Compulsory Part

- 1. Let $\omega = e^{\pi i/12} \in \mathbb{C}$. Find the order of ω^8 , ω^{13} , ω^{22} and ω^{2078} respectively as elements in the multiplicative group \mathbb{C}^{\times} of the complex number.
- 2. Consider the special linear group $SL(2, \mathbb{R})$.
 - (a) Find an element of order 2 in $SL(2, \mathbb{R})$.
 - (b) Find an element of order 3 in $SL(2, \mathbb{R})$.
 - (c) Find an element of infinite order in $SL(2, \mathbb{R})$.
- 3. Let G be a group. Show that for all $a, b \in G$ such that |ab| is finite, we have |ab| = |ba|.
- 4. Let $\mu_1, \mu_2 \in S_n$ be two disjoint cycles. Using the fact that disjoint cycles commute, show that

$$|\mu_1\mu_2| = \operatorname{lcm}(|\mu_1|, |\mu_2|)$$

More generally, show by induction that if $\mu_1, \mu_2, \ldots, \mu_r \in S_n$ are disjoint cycles, then

$$|\mu_1\mu_2\cdots\mu_r| = \operatorname{lcm}(k_1,k_2,\ldots,k_r),$$

where $k_i = |\mu_i|$ for i = 1, 2, ..., r.

- 5. How many elements are of order 2 in D_6 ?
- 6. Let G be a finite group with an even number of elements. Show that there must be an order 2 element $a \in G$.

Optional Part

- 1. Let a, b be elements of a group G. Suppose a has order 5 and $a^3b = ba^3$. Prove that ab = ba.
- 2. By definition, the **orthogonal group** $O(2, \mathbb{R})$ consists of real 2×2 matrices A which satisfy the condition

$$A^t A = A A^t = I,$$

where A^t denotes the transpose of A, and I is the 2×2 identity matrix.

- (a) Show that $O(2, \mathbb{R})$ is a group under matrix multiplication.
- (b) Find an element of order 2 in $O(2, \mathbb{R})$.
- (c) Find an element of order 3 in $O(2, \mathbb{R})$.

- 3. Find the order of the following elements in S_7 :
 - (a) (1325).
 - (b) (1325)(47).
 - (c) (1325)(647).
 - (d) (35)(46)(37)(32).
- 4. Consider the permutations

$$\sigma = (1264)(2513), \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 2 & 7 & 5 & 1 & 3 & 6 \end{pmatrix} \in S_7.$$

- (a) Express σ and τ as
 - i. a product of transpositions, and
 - ii. a product of disjoint cycles.
- (b) Compute $|\sigma|$, $|\tau|$ and $|\sigma\tau|$.
- 5. (a) How many elements are of order 3 in S_5 ?
 - (b) How many elements are of order 4 in S_6 ?
 - (c) How many elements are of order 3 in S_7 ?
- 6. Consider the dihedral group D_n , where n is an integer greater than 2. For j = 0, 1, 2, ..., n-1, let r_j denote the anticlockwise rotation about the origin by $2\pi j/n$.
 - (a) Show that for any $k \in \mathbb{N}$, rotation $r \in D_n$ and reflection $s \in D_n$, we have

$$sr^k s = (srs)^k.$$

(b) Show that for any reflection $s \in D_n$ and any rotation $r \in D_n$, we have

$$srs = r^{-1}$$
.

(*Hint*: First prove the identities for one particular reflection s, then use the fact that any other reflection s' is equal to sr' for some rotation $r' \in D_n$.)