THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 10 Due Date: 25th April 2024

Compulsory Part

1. Find an irreducible polynomial $p \in \mathbb{Q}[x]$ such that:

(a)
$$\mathbb{Q}[x]/(p) \cong \mathbb{Q}(2-\sqrt{2}).$$

(b)
$$\mathbb{Q}[x]/(p) \cong \mathbb{Q}\left(\sqrt{1+\sqrt{3}}\right).$$

(c)
$$\mathbb{Q}[x]/(p) \cong \mathbb{Q}(\sqrt{2} + \sqrt{3}).$$

- 2. (a) Show that $x^2 5$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$.
 - (b) Show that $\mathbb{Q}(5+\sqrt{2}) = \mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(2+\sqrt{5}) = \mathbb{Q}(\sqrt{5})$ as subfields of \mathbb{R} .
 - (c) Show that $\sqrt{5}$ does not lie in $\mathbb{Q}(\sqrt{2})$.
 - (d) Conclude that $5+\sqrt{2}$ and $2+\sqrt{5}$ cannot be roots of the same irreducible polynomial in $\mathbb{Q}[x]$.
- 3. Consider the subfield $F = \mathbb{Q}(\sqrt[3]{5})$ of \mathbb{R} . Express the multiplicative inverse of $2 + \sqrt[3]{5} \in F$ in the form:

$$a + b\gamma + c\gamma^2$$
,

where $a, b, c \in \mathbb{Q}$ and $\gamma = \sqrt[3]{5}$.

4. Find an irreducible polynomial of degree 3 in $\mathbb{F}_2[x]$, and hence construct a finite field with 8 elements.

Optional Part

- 1. Let F be a subfield of a field E, and γ an element in E. Show that $F(a+b\gamma) = F(\gamma)$ for all nonzero $a, b \in F$.
- 2. Let F be a subfield of a field E, and γ an element in E. Let p, q be irreducible polynomials in F[x] such that γ is a root of both p and q. Show that q = up for some nonzero element $u \in F$.
- 3. Let $p = x^3 x^2 + 1 \in \mathbb{F}_3[x]$.
 - (a) Show that $K := \mathbb{F}_3[x]/(p)$ is a field.
 - (b) Express the multiplicative inverse of $x^2 + 1 + (p) \in K$ in the form:

$$a + bx + cx^2 + (p),$$

where $a, b, c \in \mathbb{F}_3$.