THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 10
 Due Date: 25th April 2024

Compulsory Part

1. Find an irreducible polynomial $p \in \mathbb{Q}[x]$ such that:
(a) $\mathbb{Q}[x] /(p) \cong \mathbb{Q}(2-\sqrt{2})$.
(b) $\mathbb{Q}[x] /(p) \cong \mathbb{Q}(\sqrt{1+\sqrt{3}})$.
(c) $\mathbb{Q}[x] /(p) \cong \mathbb{Q}(\sqrt{2}+\sqrt{3})$.
2. (a) Show that $x^{2}-5$ is irreducible in $\mathbb{Q}(\sqrt{2})[x]$.
(b) Show that $\mathbb{Q}(5+\sqrt{2})=\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(2+\sqrt{5})=\mathbb{Q}(\sqrt{5})$ as subfields of \mathbb{R}.
(c) Show that $\sqrt{5}$ does not lie in $\mathbb{Q}(\sqrt{2})$.
(d) Conclude that $5+\sqrt{2}$ and $2+\sqrt{5}$ cannot be roots of the same irreducible polynomial in $\mathbb{Q}[x]$.
3. Consider the subfield $F=\mathbb{Q}(\sqrt[3]{5})$ of \mathbb{R}. Express the multiplicative inverse of $2+\sqrt[3]{5} \in F$ in the form:

$$
a+b \gamma+c \gamma^{2}
$$

where $a, b, c \in \mathbb{Q}$ and $\gamma=\sqrt[3]{5}$.
4. Find an irreducible polynomial of degree 3 in $\mathbb{F}_{2}[x]$, and hence construct a finite field with 8 elements.

Optional Part

1. Let F be a subfield of a field E, and γ an element in E. Show that $F(a+b \gamma)=F(\gamma)$ for all nonzero $a, b \in F$.
2. Let F be a subfield of a field E, and γ an element in E. Let p, q be irreducible polynomials in $F[x]$ such that γ is a root of both p and q. Show that $q=u p$ for some nonzero element $u \in F$.
3. Let $p=x^{3}-x^{2}+1 \in \mathbb{F}_{3}[x]$.
(a) Show that $K:=\mathbb{F}_{3}[x] /(p)$ is a field.
(b) Express the multiplicative inverse of $x^{2}+1+(p) \in K$ in the form:

$$
a+b x+c x^{2}+(p)
$$

where $a, b, c \in \mathbb{F}_{3}$.

