THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 (2023-24, Term 2)
 Honours Algebraic Structures
 Homework 1
 Due Date: 18th January 2024

Compulsory Part

1. Let

$$
T:=\left\{\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right): x, y \in \mathbb{C}, x y=1\right\} .
$$

Show that T is a group under matrix multiplication.
2. A map $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called an affine linear transformation if there exist $A \in$ $\operatorname{GL}(n, \mathbb{R})$ and $b \in \mathbb{R}^{n}$ such that $\varphi(x)=A x+b$ for all $x \in \mathbb{R}^{n}$. Show that the set $\operatorname{Aff}(n, \mathbb{R})$ of affine linear transformations on \mathbb{R}^{n} forms a group under composition of maps. This group models n-dimensional real affine geometry.
3. Prove Proposition 1.1.7 in the lecture notes: Let G be a group.
(a) For all $g \in G$, we have:

$$
\left(g^{-1}\right)^{-1}=g
$$

(b) For all $a, b \in G$, we have:

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

(c) For all $g \in G, n, m \in \mathbb{Z}$, we have:

$$
g^{n} \cdot g^{m}=g^{n+m}
$$

Write down all your arguments in a rigorous way.
4. Let G_{1}, G_{2} be groups. Show that the Cartesian product $G_{1} \times G_{2}$ is a group under the operation

$$
\left(a_{1}, b_{1}\right) *\left(a_{2}, b_{2}\right):=\left(a_{1} *_{1} a_{2}, b_{1} *_{2} b_{2}\right)
$$

for $a_{1}, a_{2} \in G_{1}$ and $b_{1}, b_{2} \in G_{2}$, where $*_{1}, *_{2}$ are the group operations of G_{1}, G_{2} respectively. The group $G_{1} \times G_{2}$ is called the direct product of G_{1} and G_{2}.
Can you also define the direct product of an arbitrary collection $\left\{G_{i}: i \in I\right\}$ of groups (here I is an arbitrary, possibly infinite and even uncountable, index set)?
5. Let G be a group. Show that the equation

$$
x^{2}=x
$$

has a unique solution in G.

Optional Part

1. Determine whether the given set equipped with the given binary operation is a group (if it is, give a proof; if it is not, explain why):
(a) The set $\mathbb{N}=\{0,1,2, \ldots\}$ of natural numbers, equipped with addition.
(b) The set $\mathbb{R}_{>0}$ of positive real numbers, equipped with multiplication.
(c) The set $2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4, \ldots\}$ of even integers, equipped with addition. (How about odd integers?)
(d) The set $U:=\{z \in \mathbb{C}:|z|=1\}$ of complex numbers with modulus 1 , equipped with multiplication.
(e) The set $\{z \in \mathbb{C}: \operatorname{Im} z=1\}$ of complex numbers with imaginary part equals to 1 , equipped with multiplication.
(f) The set $M_{m \times n}(\mathbb{C})$ of $m \times n$ complex matrices, equipped with matrix addition.
(g) The set of 2×2 matrices with integer coefficients whose determinants are non-zero, equipped with matrix multiplication.
(h) The set $H=\mathbb{R} \times \mathbb{R}$, equipped with the operation $*$ defined by

$$
\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}+x_{1} x_{2}\right)
$$

for $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$.
2. Let

$$
R=\left\{r \in \mathbb{Q}: \text { there exist } n \in \mathbb{Z}_{>0} \text { such that } 2^{n} r \in \mathbb{Z}\right\} .
$$

Is R a group under addition? Justify your answer.
3. The quaternion group is defined as follows:

$$
Q=\{1,-1, i, j, k,-i,-j,-k\}
$$

where the group operation is written multiplicatively, the symbol 1 denotes the identity element, and $-i,-j,-k$ denotes $(-1) i,(-1) j,(-1) k$, respectively.
Moreover, by definition -1 commutes with every element of the group (for instance, $(-1) i=i(-1)=-i$, and the symbols i, j, k satisfy the following relations:

$$
(-1)^{2}=1, \quad i^{2}=j^{2}=k^{2}=i j k=-1 .
$$

(a) Show that $i j=k$ and $j k=i$.
(b) Show that $i j=-j i$.
4. If $a, b \in G$ are commuting elements in a group G, i.e. $a b=b a$, show that $(a b)^{n}=a^{n} b^{n}$ for any $n \in \mathbb{Z}$.
5. Prove rigorously that the set $\operatorname{Aut}_{\mathfrak{C}}(A)$ of automorphisms of an object A in a category \mathcal{C} is a group with identity $\mathbf{1}_{A}$.

