THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2078 (2023-24, Term 2) Honours Algebraic Structures Homework 1 Due Date: 18th January 2024

Compulsory Part

1. Let

$$T := \left\{ \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix} : x, y \in \mathbb{C}, \, xy = 1 \right\}.$$

Show that T is a group under matrix multiplication.

- A map φ : ℝⁿ → ℝⁿ is called an affine linear transformation if there exist A ∈ GL(n, ℝ) and b ∈ ℝⁿ such that φ(x) = Ax + b for all x ∈ ℝⁿ. Show that the set Aff(n, ℝ) of affine linear transformations on ℝⁿ forms a group under composition of maps. This group models n-dimensional real affine geometry.
- 3. Prove Proposition 1.1.7 in the lecture notes: Let G be a group.
 - (a) For all $g \in G$, we have:

$$(g^{-1})^{-1} = g$$

(b) For all $a, b \in G$, we have:

$$(ab)^{-1} = b^{-1}a^{-1}$$

(c) For all $g \in G$, $n, m \in \mathbb{Z}$, we have:

$$g^n \cdot g^m = g^{n+m}.$$

Write down all your arguments in a rigorous way.

4. Let G_1, G_2 be groups. Show that the Cartesian product $G_1 \times G_2$ is a group under the operation

$$(a_1, b_1) * (a_2, b_2) := (a_1 * a_2, b_1 * b_2)$$

for $a_1, a_2 \in G_1$ and $b_1, b_2 \in G_2$, where $*_1, *_2$ are the group operations of G_1, G_2 respectively. The group $G_1 \times G_2$ is called the **direct product** of G_1 and G_2 .

Can you also define the direct product of an arbitrary collection $\{G_i : i \in I\}$ of groups (here I is an arbitrary, possibly infinite and even uncountable, index set)?

5. Let G be a group. Show that the equation

$$x^2 = x$$

has a *unique* solution in G.

Optional Part

- 1. Determine whether the given set equipped with the given binary operation is a group (if it is, give a proof; if it is not, explain why):
 - (a) The set $\mathbb{N} = \{0, 1, 2, ...\}$ of natural numbers, equipped with addition.
 - (b) The set $\mathbb{R}_{>0}$ of positive real numbers, equipped with multiplication.
 - (c) The set $2\mathbb{Z} = \{\dots, -4, -2, 0, 2, 4, \dots\}$ of even integers, equipped with addition. (How about odd integers?)
 - (d) The set $U := \{z \in \mathbb{C} : |z| = 1\}$ of complex numbers with modulus 1, equipped with multiplication.
 - (e) The set $\{z \in \mathbb{C} : \text{Im } z = 1\}$ of complex numbers with imaginary part equals to 1, equipped with multiplication.
 - (f) The set $M_{m \times n}(\mathbb{C})$ of $m \times n$ complex matrices, equipped with matrix addition.
 - (g) The set of 2×2 matrices with integer coefficients whose determinants are non-zero, equipped with matrix multiplication.
 - (h) The set $H = \mathbb{R} \times \mathbb{R}$, equipped with the operation * defined by

$$(x_1, y_1) * (x_2, y_2) = (x_1 + x_2, y_1 + y_2 + x_1 x_2)$$

for $x_1, x_2, y_1, y_2 \in \mathbb{R}$.

2. Let

 $R = \{r \in \mathbb{Q} : \text{ there exist } n \in \mathbb{Z}_{>0} \text{ such that } 2^n r \in \mathbb{Z}\}.$

Is R a group under addition? Justify your answer.

3. The **quaternion group** is defined as follows:

$$Q = \{1, -1, i, j, k, -i, -j, -k\},\$$

where the group operation is written multiplicatively, the symbol 1 denotes the identity element, and -i, -j, -k denotes (-1)i, (-1)j, (-1)k, respectively.

Moreover, by definition -1 commutes with every element of the group (for instance, (-1)i = i(-1) = -i), and the symbols i, j, k satisfy the following relations:

$$(-1)^2 = 1, \quad i^2 = j^2 = k^2 = ijk = -1.$$

- (a) Show that ij = k and jk = i.
- (b) Show that ij = -ji.
- 4. If $a, b \in G$ are commuting elements in a group G, i.e. ab = ba, show that $(ab)^n = a^n b^n$ for any $n \in \mathbb{Z}$.
- 5. Prove rigorously that the set $\operatorname{Aut}_{\mathbb{C}}(A)$ of automorphisms of an object A in a category \mathbb{C} is a group with identity $\mathbf{1}_A$.