
MATH2068 Honour Mathematical Analysis II
Week 7, 26 Feb 2024

Clive Chan

Figure 1: Maybe Math-addiction is not curable?

We went through the following:

Theorem 1 (Integral Mean value theorem). Let f integrable and g continuous, non-

negative on [a, b], then ∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx

for some c ∈ (a, b).

Remarks. An intuition for the formula: we know that

F (b)− F (a) = F ′(c)(b− a)

for F differentiable on (a, b) and continuous on [a, b].

Put F (x) =
∫ x

a
f(x)dx, then the above equation becomes∫ b

a

f(x)dx = f(c)(b− a) = f(c)

∫ b

a

dx.

Note that J 7→
∫
J
g(x)dx is a measure on the subintervals J because g is non-negative,

so one may naturally expect the intergral mean value theorem to hold because it is just

changing the measure from dx to dµ, µ(J) =
∫
J
g.

Example 1. Show that limn→∞
∫ π

2

0
cosn xdx = 0.
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Proof. cosn x = cosx · cosn−1 x, both are differentiable on (0, π
2
) and continuous on [0, π

2
].

Moreover, they are both non-negative on [0, π
2
].

Note that c ∈ (0, π
2
implies cos c < 1, so cosn c → 0. Hence,

lim
n→∞

∫ π
2

0

cosn xdx = lim
n→∞

cosn−1 c

∫ π
2

0

cosxdx = 0

because we know that the definite integral is finite.

Example 2. Show that limn→∞
∫ 1

0
xn

x2+1
dx = 0.

Proof. Similarly, after checking all the assumptions, we note that limn→∞ cn−1 = 0 for

any 0 < c < 1 and
∫ 1

0
x

x2+1
dx < ∞.

Next we prove a mean value type result in two propositions.

Proposition 2. If f : [a, b] → R is Riemann-integrable on [a, b] then there exists at least

one point c ∈ (a, b) at which f is continuous.

Proof. By integrability for all ϵ > 0 there exists a partition P = {x0, · · · , xn} such that

ϵ(b− a) > U(f, P )− L(f, P ) =
n∑

k=1

osc(f, [xk−1, xk])(xk − xk−1).

Assume osc(f, [xj−1, xj]) ≥ ϵ for all j then the RHS above becomes ≥ ϵ
∑

(xk − xk−1) =

ϵ(b− a), which is a contradiction.

Hence there exists some j such that osc(f, [xj−1, xj]) < ϵ. Any sub-interval of [xj−1, xj]

has no greater oscillation and we can pick instead a subinterval of length < ϵ if [xj−1, xj]

is not shorter than ϵ. In this way we see that there exists a subinterval J ⊂ (a, b) such

that both the oscillation on J and the length of J are less than ϵ.

Pick ϵ = 1 and denote by J1 what we obtained above. Repeat the argument on J1 with

ϵ = 1
2
to obtain a J2. Inductively obtain a nested sequence {Jn}. By nested interval

theorem there exists a point c ∈ ∩nJn.

For any ϵ, there exists n ∈ N such that if x ∈ Jn then |f(x) − f(c)| < 1
n
< ϵ. Note that

|x− c| < 1
n
by definition of Jn. Hence f is continuous at c.
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Proposition 3. If f : [a, b] → R is Riemann-integrable on [a, b] then for every ϵ > 0

there exists ci ∈ (a, b) (i = 1, 2) such that f is continuous at ci (i = 1, 2) andf(c1)(b− a) <
∫ b

a
f(x)dx+ ϵ∫ b

a
f(x)dx− ϵ < f(c2)(b− a)

Proof. Fix ϵ > 0, by integrability there exists P = {x0, x1, · · · , xn} be a partition of [a, b]

such that

U(f, P ) =
n∑

k=1

sup
xk−1≤x≤xk

f(x)(xk − xk−1) <

∫ b

a

f(x)dx+ ϵ.

Similar as in the last preposition, there exists j such that

sup
xj−1≤x≤xj

f(x) <
1

b− a

(∫ b

a

f(x)dx+ ϵ

)
.

Apply the previous proposition on any non-degenerate (length non-zero) subinterval, we

see that f is continuous in a dense subset of [a, b], so there exists a point c ∈ [xj−1, xj]

such that f is continuous at c. Now f(c) < supxj−1≤x≤xj
f(x) < 1

b−a

(∫ b

a
f(x)dx+ ϵ

)
.

Refer to arXiv: 1106.1807, “Mean Value Integral Inequalities” by Rodrigo López Pouso.


