# MATH2068 Honour Mathematical Analysis II 

Week 7, 26 Feb 2024
Clive Chan


Figure 1: Maybe Math-addiction is not curable?

We went through the following:

Theorem 1 (Integral Mean value theorem). Let $f$ integrable and $g$ continuous, nonnegative on $[a, b]$, then

$$
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(c) \int_{a}^{b} g(x) \mathrm{d} x
$$

for some $c \in(a, b)$.
Remarks. An intuition for the formula: we know that

$$
F(b)-F(a)=F^{\prime}(c)(b-a)
$$

for $F$ differentiable on $(a, b)$ and continuous on $[a, b]$.
Put $F(x)=\int_{a}^{x} f(x) \mathrm{d} x$, then the above equation becomes

$$
\int_{a}^{b} f(x) \mathrm{d} x=f(c)(b-a)=f(c) \int_{a}^{b} \mathrm{~d} x .
$$

Note that $J \mapsto \int_{J} g(x) \mathrm{d} x$ is a measure on the subintervals $J$ because $g$ is non-negative, so one may naturally expect the intergral mean value theorem to hold because it is just changing the measure from $\mathrm{d} x$ to $\mathrm{d} \mu, \mu(J)=\int_{J} g$.

Example 1. Show that $\lim _{n \rightarrow \infty} \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=0$.

Proof. $\cos ^{n} x=\cos x \cdot \cos ^{n-1} x$, both are differentiable on $\left(0, \frac{\pi}{2}\right)$ and continuous on $\left[0, \frac{\pi}{2}\right]$. Moreover, they are both non-negative on $\left[0, \frac{\pi}{2}\right]$.

Note that $c \in\left(0, \frac{\pi}{2}\right.$ implies $\cos c<1$, so $\cos ^{n} c \rightarrow 0$. Hence,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\frac{\pi}{2}} \cos ^{n} x \mathrm{~d} x=\lim _{n \rightarrow \infty} \cos ^{n-1} c \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{~d} x=0
$$

because we know that the definite integral is finite.
Example 2. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{x^{n}}{x^{2}+1} \mathrm{~d} x=0$.

Proof. Similarly, after checking all the assumptions, we note that $\lim _{n \rightarrow \infty} c^{n-1}=0$ for any $0<c<1$ and $\int_{0}^{1} \frac{x}{x^{2}+1} \mathrm{~d} x<\infty$.

Next we prove a mean value type result in two propositions.
Proposition 2. If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable on $[a, b]$ then there exists at least one point $c \in(a, b)$ at which $f$ is continuous.

Proof. By integrability for all $\epsilon>0$ there exists a partition $P=\left\{x_{0}, \cdots, x_{n}\right\}$ such that

$$
\epsilon(b-a)>U(f, P)-L(f, P)=\sum_{k=1}^{n} \operatorname{osc}\left(f,\left[x_{k-1}, x_{k}\right]\right)\left(x_{k}-x_{k-1}\right) .
$$

Assume $\operatorname{osc}\left(f,\left[x_{j-1}, x_{j}\right]\right) \geq \epsilon$ for all $j$ then the RHS above becomes $\geq \epsilon \sum\left(x_{k}-x_{k-1}\right)=$ $\epsilon(b-a)$, which is a contradiction.

Hence there exists some $j$ such that $\operatorname{osc}\left(f,\left[x_{j-1}, x_{j}\right]\right)<\epsilon$. Any sub-interval of $\left[x_{j-1}, x_{j}\right]$ has no greater oscillation and we can pick instead a subinterval of length $<\epsilon$ if $\left[x_{j-1}, x_{j}\right]$ is not shorter than $\epsilon$. In this way we see that there exists a subinterval $J \subset(a, b)$ such that both the oscillation on $J$ and the length of $J$ are less than $\epsilon$.

Pick $\epsilon=1$ and denote by $J_{1}$ what we obtained above. Repeat the argument on $J_{1}$ with $\epsilon=\frac{1}{2}$ to obtain a $J_{2}$. Inductively obtain a nested sequence $\left\{J_{n}\right\}$. By nested interval theorem there exists a point $c \in \cap_{n} J_{n}$.

For any $\epsilon$, there exists $n \in \mathbb{N}$ such that if $x \in J_{n}$ then $|f(x)-f(c)|<\frac{1}{n}<\epsilon$. Note that $|x-c|<\frac{1}{n}$ by definition of $J_{n}$. Hence $f$ is continuous at $c$.

Proposition 3. If $f:[a, b] \rightarrow \mathbb{R}$ is Riemann-integrable on $[a, b]$ then for every $\epsilon>0$ there exists $c_{i} \in(a, b)(i=1,2)$ such that $f$ is continuous at $c_{i}(i=1,2)$ and

$$
\begin{cases}f\left(c_{1}\right)(b-a) & <\int_{a}^{b} f(x) \mathrm{d} x+\epsilon \\ \int_{a}^{b} f(x) \mathrm{d} x-\epsilon & <f\left(c_{2}\right)(b-a)\end{cases}
$$

Proof. Fix $\epsilon>0$, by integrability there exists $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[a, b]$ such that

$$
U(f, P)=\sum_{k=1}^{n} \sup _{x_{k-1} \leq x \leq x_{k}} f(x)\left(x_{k}-x_{k-1}\right)<\int_{a}^{b} f(x) \mathrm{d} x+\epsilon .
$$

Similar as in the last preposition, there exists $j$ such that

$$
\sup _{x_{j-1} \leq x \leq x_{j}} f(x)<\frac{1}{b-a}\left(\int_{a}^{b} f(x) \mathrm{d} x+\epsilon\right) .
$$

Apply the previous proposition on any non-degenerate (length non-zero) subinterval, we see that $f$ is continuous in a dense subset of $[a, b]$, so there exists a point $c \in\left[x_{j-1}, x_{j}\right]$ such that $f$ is continuous at $c$. Now $f(c)<\sup _{x_{j-1} \leq x \leq x_{j}} f(x)<\frac{1}{b-a}\left(\int_{a}^{b} f(x) \mathrm{d} x+\epsilon\right)$.

Refer to arXiv: 1106.1807, "Mean Value Integral Inequalities" by Rodrigo López Pouso.

