MATH2068 Honour Mathematical Analysis II

Week 4, 29 Jan 2024
Clive Chan

Figure 1: This week we have Kana (Piman ver.), also drew by my friend:)

Theorem 1 (Warm up). Let $-\infty<a<b<\infty$ and let f, g be differentiable on (a, b) such that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Suppose that

$$
\lim _{x \rightarrow a^{+}} f(x)=0=\lim _{x \rightarrow a^{+}} g(x)
$$

If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R} \cup\{ \pm \infty\}$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$.

Proof. CASE I: Suppose $L<\infty$.
By the definition of right limit, for any $\epsilon>0$ there exists a $\delta=\delta(\epsilon)>0$ such that for all $x \in(a, a+\delta)$ we have

$$
\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\epsilon
$$

For any $(x, y) \subset(a, a+\delta)$, the Cauchy Mean Value Theorem tells us that there exists $u \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f^{\prime}(u)}{g^{\prime}(u)} .
$$

Since $u \in(x, y) \subset(a, a+\delta)$, we have

$$
\left|\frac{f^{\prime}(u)}{g^{\prime}(u)}-L\right|<\epsilon
$$

which is equivalent to

$$
\left|\frac{f(y)-f(x)}{g(y)-g(x)}-L\right|<\epsilon
$$

Take limit $x \rightarrow a^{+}, f(x), g(x) \rightarrow 0$ (because what we have obtained is true for all $x \in(a, a+\delta))$ so we obtain

$$
\left|\frac{f(y)}{g(y)}-L\right| \leq \epsilon
$$

and this inequality is true for all $y \in(a, a+\delta)$. Hence the right limit of $\frac{f(y)}{g(y)}$ is L.
CASE II: Suppose $L=\infty$.
By the definition of right limit, for any $M>0$ there exists a $\delta=\delta(\epsilon)>0$ such that for all $x \in(a, a+\delta)$ we have

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}>M
$$

For any $(x, y) \subset(a, a+\delta)$, the Cauchy Mean Value Theorem tells us that there exists $u \in(x, y)$ such that

$$
\frac{f(y)-f(x)}{g(y)-g(x)}=\frac{f^{\prime}(u)}{g^{\prime}(u)}
$$

Since $u \in(x, y) \subset(a, a+\delta)$, we have

$$
\frac{f^{\prime}(u)}{g^{\prime}(u)}>M
$$

which is equivalent to

$$
\frac{f(y)-f(x)}{g(y)-g(x)}>M
$$

Take limit on x, and then y as above.
Theorem 2. Suppose $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f(x)=0$ and $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L
$$

Proof. We start with the case $\infty>L$.
Similar to the above argument, for any $\epsilon>0$ there exists K such that for all $x, y>K$ we have

$$
L-\epsilon<\frac{f(x)-f(y)}{g(x)-g(y)}<L+\epsilon
$$

Take limit $y \rightarrow \infty$ we obtain

$$
L-\epsilon \leq \frac{f(x)}{g(x)} \leq L+\epsilon
$$

and the result follows.
When $L=\infty$, our argument would be starting with: for any $M>0$ there exists K such that for all $x, y>K$ we have

$$
\frac{f(x)-f(y)}{g(x)-g(y)}>M
$$

Take limit on y then

$$
\frac{f(x)}{g(x)}>M
$$

for all $x>K$. The result follows.
Theorem 3. Suppose $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f(x)=\infty$ and $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, then

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L
$$

Proof. We start with the case $\infty>L>0$.
By $\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$ we know that for all $\epsilon>0$ there exists $K_{1}=K_{1}(\epsilon)>0$ such that for all $x>K_{1}$ we have

$$
L-\epsilon<\frac{f^{\prime}(x)}{g^{\prime}(x)}<L+\epsilon
$$

Pick any $x, y>K_{1}$, by Cauchy mean value theorem, there exists $u \in(x, y)$ such that

$$
\frac{f^{\prime}(u)}{g^{\prime}(u)}=\frac{f(y)-f(x)}{g(y)-g(x)}
$$

Since $u \in(x, y)$ implies $u>K_{1}$, we have $L-\epsilon<\frac{f(y)-f(x)}{g(y)-g(x)}<L+\epsilon$.
Since $g \rightarrow \infty$ we can assume $g(x), g(y)>0$. Or, to be clumsy, we can find K_{1}^{\prime} such that $g(x)>0$ whenever $x>K_{1}^{\prime}$ and replace K_{1} by $\max \left\{K_{1}, K_{1}^{\prime}\right\}$.

Fix x, for any $d>0$ to be determined, there exists K_{2} such that for all $y>K_{2}$ we have $0<\frac{g(x)}{g(y)}<d$ (note: the fraction is positive), which gives

$$
\begin{gathered}
(L-\epsilon) \frac{g(y)-g(x)}{g(y)}<\frac{f(y)-f(x)}{g(y)-g(x)} \frac{g(y)-g(x)}{g(y)}<(L+\epsilon) \frac{g(y)-g(x)}{g(y)} \\
(L-\epsilon)(1-d)<\frac{f(y)-f(x)}{g(y)}<(L+\epsilon)(1-d)<L+\epsilon
\end{gathered}
$$

For the same d we can also find K_{3} such that for all $y>K_{3}$ we have $-d<\frac{f(x)}{g(y)}<d$, hence for any $y>K_{3}$ we have

$$
(L-\epsilon)(1-d)-d<\frac{f(y)}{g(y)}<L+\epsilon+d
$$

Choose $d=\min \left\{\frac{\epsilon}{L-\epsilon}, \epsilon\right\}$, this gives $(L-\epsilon)(1-d) \geq L-2 \epsilon$ and $d \leq \epsilon$. As d is fixed, we may fix K_{2}, K_{3}, let $K=\max \left\{K_{1}, K_{2}, K_{3}\right\}$, then for all $x, y>K$ we have

$$
L-3 \epsilon<\frac{f(y)}{g(y)}<L+2 \epsilon
$$

This implies $\lim _{y \rightarrow \infty} \frac{f(y)}{g(y)}=L$.
I think students used l'Hopital's rule a lot in MATH1018, just without a rigorous treatment on the proof behind.

