## MATH2068 Honour Mathematical Analysis II

Week 4, 29 Jan 2024 Clive Chan



Figure 1: This week we have Kana (Piman ver.), also drew by my friend:)

**Theorem 1** (Warm up). Let  $-\infty < a < b < \infty$  and let f, g be differentiable on (a, b) such that  $g'(x) \neq 0$  for all  $x \in (a, b)$ . Suppose that

$$\lim_{x \to a^+} f(x) = 0 = \lim_{x \to a^+} g(x).$$

If  $\lim_{x \to a^+} \frac{f'(x)}{g'(x)} = L \in \mathbb{R} \cup \{\pm \infty\}$ , then  $\lim_{x \to a^+} \frac{f(x)}{g(x)} = L$ .

## *Proof.* CASE I: Suppose $L < \infty$ .

By the definition of right limit, for any  $\epsilon > 0$  there exists a  $\delta = \delta(\epsilon) > 0$  such that for all  $x \in (a, a + \delta)$  we have

$$\left|\frac{f'(x)}{g'(x)} - L\right| < \epsilon.$$

For any  $(x, y) \subset (a, a + \delta)$ , the Cauchy Mean Value Theorem tells us that there exists  $u \in (x, y)$  such that

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(u)}{g'(u)}.$$

Since  $u \in (x, y) \subset (a, a + \delta)$ , we have

$$\left|\frac{f'(u)}{g'(u)} - L\right| < \epsilon$$

which is equivalent to

$$\left|\frac{f(y) - f(x)}{g(y) - g(x)} - L\right| < \epsilon.$$

Take limit  $x \to a^+$ ,  $f(x), g(x) \to 0$  (because what we have obtained is true for all  $x \in (a, a + \delta)$ ) so we obtain

$$\left|\frac{f(y)}{g(y)} - L\right| \le \epsilon$$

and this inequality is true for all  $y \in (a, a + \delta)$ . Hence the right limit of  $\frac{f(y)}{g(y)}$  is L.

CASE II: Suppose  $L = \infty$ .

By the definition of right limit, for any M > 0 there exists a  $\delta = \delta(\epsilon) > 0$  such that for all  $x \in (a, a + \delta)$  we have

$$\frac{f'(x)}{g'(x)} > M$$

For any  $(x, y) \subset (a, a + \delta)$ , the Cauchy Mean Value Theorem tells us that there exists  $u \in (x, y)$  such that

$$\frac{f(y) - f(x)}{g(y) - g(x)} = \frac{f'(u)}{g'(u)}.$$

Since  $u \in (x, y) \subset (a, a + \delta)$ , we have

$$\frac{f'(u)}{g'(u)} > M$$

which is equivalent to

$$\frac{f(y) - f(x)}{g(y) - g(x)} > M$$

Take limit on x, and then y as above.

**Theorem 2.** Suppose 
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} f(x) = 0$$
 and  $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L$ , then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

*Proof.* We start with the case  $\infty > L$ .

Similar to the above argument, for any  $\epsilon > 0$  there exists K such that for all x, y > K we have

$$L - \epsilon < \frac{f(x) - f(y)}{g(x) - g(y)} < L + \epsilon$$

Take limit  $y \to \infty$  we obtain

$$L - \epsilon \le \frac{f(x)}{g(x)} \le L + \epsilon$$

and the result follows.

When  $L = \infty$ , our argument would be starting with: for any M > 0 there exists K such that for all x, y > K we have

$$\frac{f(x) - f(y)}{g(x) - g(y)} > M$$

Take limit on y then

$$\frac{f(x)}{g(x)} > M$$

for all x > K. The result follows.

**Theorem 3.** Suppose 
$$\lim_{x \to \infty} g(x) = \lim_{x \to \infty} f(x) = \infty$$
 and  $\lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L$ , then  
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

*Proof.* We start with the case  $\infty > L > 0$ .

By  $\lim_{x\to\infty} \frac{f'(x)}{g'(x)} = L$  we know that for all  $\epsilon > 0$  there exists  $K_1 = K_1(\epsilon) > 0$  such that for all  $x > K_1$  we have

$$L - \epsilon < \frac{f'(x)}{g'(x)} < L + \epsilon$$

Pick any  $x, y > K_1$ , by Cauchy mean value theorem, there exists  $u \in (x, y)$  such that

$$\frac{f'(u)}{g'(u)} = \frac{f(y) - f(x)}{g(y) - g(x)}.$$

Since  $u \in (x, y)$  implies  $u > K_1$ , we have  $L - \epsilon < \frac{f(y) - f(x)}{g(y) - g(x)} < L + \epsilon$ .

Since  $g \to \infty$  we can assume g(x), g(y) > 0. Or, to be clumsy, we can find  $K'_1$  such that g(x) > 0 whenever  $x > K'_1$  and replace  $K_1$  by  $\max\{K_1, K'_1\}$ .

Fix x, for any d > 0 to be determined, there exists  $K_2$  such that for all  $y > K_2$  we have  $0 < \frac{g(x)}{g(y)} < d$  (note: the fraction is positive), which gives

$$(L-\epsilon)\frac{g(y) - g(x)}{g(y)} < \frac{f(y) - f(x)}{g(y) - g(x)}\frac{g(y) - g(x)}{g(y)} < (L+\epsilon)\frac{g(y) - g(x)}{g(y)}$$
$$(L-\epsilon)(1-d) < \frac{f(y) - f(x)}{g(y)} < (L+\epsilon)(1-d) < L+\epsilon$$

For the same d we can also find  $K_3$  such that for all  $y > K_3$  we have  $-d < \frac{f(x)}{g(y)} < d$ , hence for any  $y > K_3$  we have

$$(L-\epsilon)(1-d) - d < \frac{f(y)}{g(y)} < L + \epsilon + d$$

| <br>_ |  |
|-------|--|

Choose  $d = \min\{\frac{\epsilon}{L-\epsilon}, \epsilon\}$ , this gives  $(L-\epsilon)(1-d) \ge L - 2\epsilon$  and  $d \le \epsilon$ . As d is fixed, we may fix  $K_2, K_3$ , let  $K = \max\{K_1, K_2, K_3\}$ , then for all x, y > K we have

$$L-3\epsilon < \frac{f(y)}{g(y)} < L+2\epsilon$$
 This implies  $\lim_{y\to\infty} \frac{f(y)}{g(y)} = L.$   $\Box$ 

I think students used l'Hopital's rule a lot in MATH1018, just without a rigorous treatment on the proof behind.