MATH2068 Honour Mathematical Analysis II

Week 3, 22 Jan 2024
Clive Chan

Figure 1: It seems like many of you like Anya, and my friend drew one for you

Basically, the first part of the course is a reformulation on HKDSE mathematics, using the rigorous language. For instance, we proved the following relationship for a function f defined on an open interval $I \ni c$:

The proof of the right arrow is using Caratheodory's result, which gave a φ continuous at c and $\varphi(c)=f^{\prime}(c)$. The proof of the left arrow is, roughly speaking, by Taylor (with remainder $\left.\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}, x_{0} \in(c-r, c+r), f^{\prime \prime}\left(x_{0}\right)>0\right)$ we know that f is locally a parabola opens upward, and then we make use of the continuity of $f^{\prime \prime}$ at x_{0}.
Today we look at l'Hopital's theorem and a generalization of it.
Theorem 1 (l'Hospital). Let f, g be differentiable on $(a, b) \ni c, f(c)=g(c)=0$ and for points other than c we have $g, g^{\prime} \neq 0$. Then $\lim _{x \rightarrow c} \frac{f}{g}=\lim _{x \rightarrow c} \frac{f^{\prime}}{g^{\prime}}$ if the RHS exists.
Remarks. If RHS DNE, the l'Hopital theorem does not say that LHS DNE.
Theorem 2 (Stolz-Cesaro). Suppose $\left(b_{n}\right)>0 \subset \mathbb{R}, \sum b_{n} \rightarrow \infty$, then for all $\left(a_{n}\right) \subset \mathbb{R}$ we have

$$
\limsup _{n \rightarrow \infty} \frac{a_{1}+\cdots+a_{n}}{b_{1}+\cdots+b_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} .
$$

Proof. Recall that $\limsup _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \sup _{m \geq n} \frac{a_{m}}{b_{m}}$. For any $\epsilon>0$ there exists $k \in \mathbb{N}$ such that for all $n \geq k, \sup _{m \geq n} \frac{a_{m}}{b_{m}}-L<\epsilon$. That is, $\sup _{m \geq k} \frac{a_{m}}{b_{m}}-L<\epsilon$. Fix ϵ, and then fix k. We have

$$
\frac{a_{m}}{b_{m}}<L+\epsilon
$$

for all $m \geq k$, so writing A_{n}, B_{n} be summation of the first n terms of $\left(a_{n}\right),\left(b_{n}\right)$ respectively,

$$
\begin{aligned}
a_{1}+\cdots+a_{m} & <a_{1}+\cdots+a_{k}+(L+\epsilon)\left(b_{k+1}+\cdots+b_{m}\right) \\
& =a_{1}+\cdots+a_{k}+(L+\epsilon)\left(b_{1}+\cdots b_{k}+b_{k+1}+\cdots+b_{m}-\left(b_{1}+\cdots b_{k}\right)\right) \\
A_{m} & <A_{k}+(L+\epsilon)\left(B_{m}-B_{k}\right) \\
\frac{A_{m}}{B_{m}} & <\frac{A_{k}}{B_{m}}+(L+\epsilon)-\frac{B_{k}}{B_{m}}(L+\epsilon) \\
\limsup _{m \rightarrow \infty} \frac{A_{m}}{B_{m}} & <\lim _{m \rightarrow \infty} \frac{A_{k}}{B_{m}}+(L+\epsilon)-\lim _{m \rightarrow \infty} \frac{B_{k}}{B_{m}}(L+\epsilon) \\
\limsup _{m \rightarrow \infty} \frac{A_{m}}{B_{m}} & <L+\epsilon
\end{aligned}
$$

This is true for all $\epsilon>0$ so the result follows.
Remarks. Similarly, we can deduce a version for \lim inf. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists, then its limsup, lim inf are the same.
Example 1. Calculate $\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln n}$.
Proof. Read the above theorem in the form

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{B_{n}}=\lim _{n \rightarrow \infty} \frac{A_{n}-A_{n-1}}{B_{n}-B_{n-1}}
$$

then we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1+\frac{1}{2}+\cdots+\frac{1}{n}}{\ln n} & =\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\ln n-\ln (n-1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\ln \left(\frac{n}{n-1}\right)^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\ln \left(1-\frac{1}{n}\right)^{-n}} \\
& =1
\end{aligned}
$$

Example 2. Calculate $\lim _{n \rightarrow \infty} \frac{n^{n}}{1+2^{2}+3^{3}+\cdots+n^{n}}$.

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{n}}{1+2^{2}+3^{3}+\cdots+n^{n}} & =\lim _{n \rightarrow \infty} \frac{n^{n}-(n-1)^{n-1}}{n^{n}} \\
& =1-\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{n-1} \frac{1}{n} \\
& =1-\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n} \frac{1}{n-1} \\
& =1
\end{aligned}
$$

Example 3. Calculate $\lim _{n \rightarrow \infty} n x_{n}$ where $x_{1}>0$ and $x_{n+1}=\ln \left(1+x_{n}\right)$.

Proof. Note that the sequence is positive and strictly decreasing, hence convergent. This gives $l:=\lim _{n \rightarrow \infty} x_{n}=0$ by using MATH1018.

This implies $\left(\frac{1}{x_{n}}\right)$ is a strictly increasing sequence with limit ∞. By Stolz-Cesaro's theorem and repeated use of l'Hopital's theorem,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n x_{n} & =\lim _{n \rightarrow \infty} \frac{n}{\frac{1}{x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{n+1-n}{\frac{1}{x_{n+1}}-\frac{1}{x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{x_{n} x_{n+1}}{x_{n}-x_{n+1}} \\
& =\lim _{n \rightarrow \infty} \frac{x_{n} \ln \left(1+x_{n}\right)}{x_{n}-\ln \left(1+x_{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(1+x_{n}\right)}{x_{n}} \frac{x_{n}^{2}}{x_{n}-\ln \left(1+x_{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{x_{n}^{2}}{x_{n}-\ln \left(1+x_{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{2 x_{n}}{1-\frac{1}{1+x_{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{\frac{1}{\left(1+x_{n}\right)^{2}}} \\
& =2
\end{aligned}
$$

