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Figure 1: It seems like many of you like Anya, and my friend drew one for you

Basically, the first part of the course is a reformulation on HKDSE mathematics, using
the rigorous language. For instance, we proved the following relationship for a function f
defined on an open interval I > ¢:
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The proof of the right arrow is using Caratheodory’s result, which gave a ¢ continuous
at ¢ and p(c) = f'(c). The proof of the left arrow is, roughly speaking, by Taylor (with
remainder 3 f”(z)(x — x0)?, 20 € (¢ —r,c+ 1), f'(x9) > 0) we know that f is locally a
parabola opens upward, and then we make use of the continuity of f” at xg.

Today we look at I’'Hopital’s theorem and a generalization of it.

Theorem 1 (I'Hospital). Let f, g be differentiable on (a,b) > ¢, f(c) = g(c) = 0 and for
/
points other than ¢ we have g,g9" # 0. Then lim f = lim L/ f the RHS exists.
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Remarks. If RHS DNE, the I’'Hopital theorem does not say that LHS DNE.

Theorem 2 (Stolz-Cesaro). Suppose (b,) >0 C R,> b, — oo, then for all (a,) C R we
have
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Proof. Recall that limsup — = lim sup —. For any ¢ > 0 there exists k£ € N such that
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for all n > k, sup — — L < e. That is, sup — — L < €. Fix ¢, and then fix k. We have
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for all m > k, so writing A,,, B,, be summation of the first n terms of (a,,), (b,) respectively,
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This is true for all € > 0 so the result follows. OJ

Remarks. Similarly, we can deduce a version for liminf. If lim, . % exists, then its

n

lim sup, lim inf are the same.
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Example 1. Calculate lim 2
n—00 Inn

Proof. Read the above theorem in the form

li n li An - An—l
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then we have
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Example 2. Calculate nlg}o 1122131 o
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Proof.
i n" ] n" — (n _ 1)n—1
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Example 3. Calculate lim nz, where z; > 0 and x,,1 = In(1 + z,,).
n—oo

Proof. Note that the sequence is positive and strictly decreasing, hence convergent. This

gives [ := lim,,_,o, ,, = 0 by using MATH1018.

This implies (wi) is a strictly increasing sequence with limit co. By Stolz-Cesaro’s theorem

and repeated use of I’'Hopital’s theorem,
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