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Figure 1: It seems like many of you like Anya, and my friend drew one for you

Basically, the first part of the course is a reformulation on HKDSE mathematics, using
the rigorous language. For instance, we proved the following relationship for a function f
defined on an open interval I ∋ c:

c: interior max. of f f ′(c) = 0

f∈C2(I)&f ′′(c)<0

The proof of the right arrow is using Caratheodory’s result, which gave a φ continuous
at c and φ(c) = f ′(c). The proof of the left arrow is, roughly speaking, by Taylor (with
remainder 1

2
f ′′(x0)(x − x0)

2, x0 ∈ (c − r, c + r), f ′′(x0) > 0) we know that f is locally a
parabola opens upward, and then we make use of the continuity of f ′′ at x0.

Today we look at l’Hopital’s theorem and a generalization of it.

Theorem 1 (l’Hospital). Let f, g be differentiable on (a, b) ∋ c, f(c) = g(c) = 0 and for

points other than c we have g, g′ ̸= 0. Then lim
x→c

f

g
= lim

x→c

f ′

g′
if the RHS exists.

Remarks. If RHS DNE, the l’Hopital theorem does not say that LHS DNE.

Theorem 2 (Stolz-Cesaro). Suppose (bn) > 0 ⊂ R,
∑

bn → ∞, then for all (an) ⊂ R we

have

lim sup
n→∞

a1 + · · ·+ an
b1 + · · ·+ bn

≤ lim sup
n→∞

an
bn

.

Proof. Recall that lim sup
n→∞

an
bn

= lim
n→∞

sup
m≥n

am
bm

. For any ϵ > 0 there exists k ∈ N such that

for all n ≥ k, sup
m≥n

am
bm

− L < ϵ. That is, sup
m≥k

am
bm

− L < ϵ. Fix ϵ, and then fix k. We have

am
bm

< L+ ϵ
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for allm ≥ k, so writing An, Bn be summation of the first n terms of (an), (bn) respectively,

a1 + · · ·+ am < a1 + · · ·+ ak + (L+ ϵ)(bk+1 + · · ·+ bm)

= a1 + · · ·+ ak + (L+ ϵ)(b1 + · · · bk + bk+1 + · · ·+ bm − (b1 + · · · bk))

Am < Ak + (L+ ϵ)(Bm −Bk)

Am

Bm

<
Ak

Bm

+ (L+ ϵ)− Bk

Bm

(L+ ϵ)

lim sup
m→∞

Am

Bm

< lim
m→∞

Ak

Bm

+ (L+ ϵ)− lim
m→∞

Bk

Bm

(L+ ϵ)

lim sup
m→∞

Am

Bm

< L+ ϵ

This is true for all ϵ > 0 so the result follows.

Remarks. Similarly, we can deduce a version for lim inf. If limn→∞
an
bn

exists, then its

lim sup, lim inf are the same.

Example 1. Calculate lim
n→∞

1 + 1
2
+ · · ·+ 1

n

lnn
.

Proof. Read the above theorem in the form

lim
n→∞

An

Bn

= lim
n→∞

An − An−1

Bn −Bn−1

,

then we have

lim
n→∞

1 + 1
2
+ · · ·+ 1

n

lnn
= lim

n→∞

1
n

lnn− ln(n− 1)

= lim
n→∞

1

ln
(

n
n−1

)n
= lim

n→∞

1

ln
(
1− 1

n

)−n

= 1

Example 2. Calculate lim
n→∞

nn

1 + 22 + 33 + · · ·+ nn
.
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Proof.

lim
n→∞

nn

1 + 22 + 33 + · · ·+ nn
= lim

n→∞

nn − (n− 1)n−1

nn

= 1− lim
n→∞

(
n− 1

n

)n−1
1

n

= 1− lim
n→∞

(
1− 1

n

)n
1

n− 1

= 1

Example 3. Calculate lim
n→∞

nxn where x1 > 0 and xn+1 = ln(1 + xn).

Proof. Note that the sequence is positive and strictly decreasing, hence convergent. This

gives l := limn→∞ xn = 0 by using MATH1018.

This implies ( 1
xn
) is a strictly increasing sequence with limit∞. By Stolz-Cesaro’s theorem

and repeated use of l’Hopital’s theorem,

lim
n→∞

nxn = lim
n→∞

n
1
xn

= lim
n→∞

n+ 1− n
1

xn+1
− 1

xn

= lim
n→∞

xnxn+1

xn − xn+1

= lim
n→∞

xn ln(1 + xn)

xn − ln(1 + xn)

= lim
n→∞

ln(1 + xn)

xn

x2
n

xn − ln(1 + xn)

= lim
n→∞

x2
n

xn − ln(1 + xn)

= lim
n→∞

2xn

1− 1
1+xn

= lim
n→∞

2
1

(1+xn)2

= 2


