THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2068 Honours Mathematical Analysis II Tutorial 1

The following are discussed in the tutorial this week.
Let I be an open interval. Let $f: I \rightarrow \mathbb{R}$ be a function.

Definition. - We say that f is differentiable at $c \in I$ if

$$
f^{\prime}(c):=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

exists. We call $f^{\prime}(c)$ the derivative of f at c.

- We say that f is differentiable on I if $f^{\prime}(x)$ exists for all $x \in I$.

Example 1. Suppose that f is differentiable at c and that $f(c)=0$. Show that $g(x):=$ $|f(x)|$ is differentiable at c if and only if $f^{\prime}(c)=0$.

Example 2. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
g(x):= \begin{cases}x^{2} \sin \left(\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that g is differentiable for all $x \in \mathbb{R}$. Also show that g^{\prime} is not bounded on $[-1,1]$.
Example 3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $c \in \mathbb{R}$, show that

$$
f^{\prime}(c)=\lim (n\{f(c+1 / n)-f(c)\}) .
$$

However, show by example that the existence of the limit of the sequence does not imply the existence of $f^{\prime}(c)$.

Example 4. Consider the Thomae's function on $[0,1]$:

$$
h(x)= \begin{cases}\frac{1}{n}, & \text { if } x=\frac{m}{n}, \text { for some positive integers } m, n \text { with no common factors, } \\ 1, & \text { if } x=0 \\ 0, & \text { if } x \text { is irrational. }\end{cases}
$$

Discuss the differentiability of h on $[0,1]$.
Example 5. Let $f:(-a, a) \rightarrow \mathbb{R}$, with $a>0$. Assume f is continuous at 0 and such that the limit

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(\lambda x)}{x}=l
$$

exists, where $0<\lambda<1$. Show that $f^{\prime}(0)$ exists. What happens to this conclusion when $\lambda>1$.

