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Claim 1. Let f : [a, b] → [c, d] be integrable, g : [c, d] → R be continuous, claim that g ◦ f

is integrable on [a, b].

Proof. Fix ϵ > 0, then there exists δ > 0 such that |g(p) − g(q)| < ϵ
2(b−a)

whenever

|p− q| < δ by uniform continuity. Fix δ > 0 then there exists a partition P on [c, d] such

that ∑
i

osci(f)||Pi|| <
ϵδ

4M

where M = maxx∈[c,d] g, Pi means the i-th sub-interval and osci denotes the oscillation on

Pi. Fix P .∑
i

osci(g ◦ f)||Pi|| =
∑

osci(f)≥δ

osci(g ◦ f)||Pi||+
∑

osci(f)<δ

osci(g ◦ f)||Pi||

:= I + II.

I:

ϵδ

4M
> I ≥ δ

∑
osci(f)≥δ

||Pi||

∴
ϵ

4M
≥

∑
osci(f)≥δ

||Pi||

∴ I < 2M
ϵ

4M

≤ ϵ

2

II: ∑
osci(f)<δ

osci(g ◦ f)||Pi|| <
ϵ

2(b− a)

∑
osci(f)<δ

||Pi||

<
ϵ

2(b− a)
(b− a)

=
ϵ

2
.

Hence U(g ◦ f, P )− L(g ◦ f, P ) < ϵ and integrability follows.
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Remarks. The proof feels like the proof for integrability of Thomae function, you separate

a partition into two classes, one sum over-estimate by function and one sum over-estimate

by total length.

Proposition 2. Suppose f is bounded on [a, b] and for any c ∈ (a, b), the restriction f |[c,b]
is integrable on [c, b]. Then f is integrable on [a, b] and

lim
c→a+

∫ b

c

f =

∫ b

a

f.

Proof. Fix ϵ > 0, let M such that f ≤ M on [a, b], pick c such that 0 < c− a < ϵ
2M

.

Define g, h to be equal to f on [c, b] but on [a, c] we have g = −M,h = M . g, h are

integrable on [a, b] and
∫ b

a
(g−h) < ϵ

2M
2M = ϵ. The results follows from squeeze theorem,

which states that given a function f on [a, b], if for all ϵ > 0 there exists g, h such that

g ≤ f ≤ h, g, h integrable on [a, b] and
∫ b

a
g − h < ϵ, then f is integrable on [a, b].

For the limit, for all ϵ > 0 we have |
∫ b

c
f −

∫ b

a
f | < (c− a)M → 0 as c → a+.
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Mid-term evaluation:

Q1: The quantity lim
δ→0

sup
0<x<δ

f(x)

x
needs to be calculated with demonstration. Besides,

skipping proofs by saying “these different cases are similar” received mark deduction.

Q2: The function g is not said to be differentiable at a and b. All proofs assuming
g′(a), g′(b) ∈ R received mark deduction to a large extent.

Q3: Q3 is not marked by me, but condition (5) is obviously insufficient because integrabil-
ity a priori only talks to the function almost everywhere. However, if f is also continuous,
then you can show f ∼= 0.

The another half of tutorial content is about skip-proof analysis, or to be precise, how to
write a proof for tests and exams.

Students often believe that they can skip-proof whenever a claim is trivial by consensus.
For instance, students must have survived from MATH2058 with good grades in order to
proceed to MATH2068, and then they often skip-proof whenever a claim looks too easy
for an “ordinary A-range student in MATH2058”.

However, we want your proof to be readable (as much as possible) by anyone with good
math logic but not necessarily have taken the course. We discussed on the following
example in class:

Claim 3. Suppose f : R → R is a continuous function on R and M is a positive number

such that f(x) < M for all x ∈ [a, b]. Then there exists a δ > 0 such that f(x) < M for

all x ∈ [a+ δ, b+ δ].

Remarks. Two common mistakes are taken by students in tests:

1. They would prefer to formulate the above claim like ”if f is continuous with f < M

on a compact domain, then we can move the domain a little bit while preserving

the estimate”. (Note: this is convincing in a daily conversation, but don’t do this

in tests)

2. They gave no demonstration.

A detailed proof expects one to write down a possible δ explicitly, and demonstrate that
for all x ∈ [a+ δ, b+ δ] we indeed have the inequality f(x) < M .

We can write: by continuity of f at b, there exists δ > 0 such that if |y − x| < δ, then

|f(y) − f(x)| < M−maxx∈[a,b] f

2
, where the RHS is positive by assumption. Then, for any

y ∈ [b, b + δ
2
], we have f(y) − f(x) <

M−maxx∈[a,b] f

2
, which implies f(y) <

M−maxx∈[a,b] f

2
+

f(x) ≤ M−maxx∈[a,b] f

2
+maxx∈[a,b] f =

M+maxx∈[a,b] f

2
< M .

Now we see that for any y ∈ [a+ δ
2
, b+ δ

2
] the inequality f(y) < M holds.

Remarks. There are something you can skip in tests:
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• No need to write down the definitions, unless they are made up by you. For example,

no need to tell me what is real number, function, continuity, limit, derivative, etc.

• No need to copy the proofs for classical theorems from Bartle. For example, no need

to copy down the whole proof of Extreme Value Theorem.

Remarks. There are something you should double check in tests:

• Whether you checked the assumptions before you apply a theorem.

• Whether you state clearly on how you use a theorem; for example, some of you used

Darboux theorem without telling me on which interval.

• (Just as a CUHK Math Alumni to say) Never assume hints are true statements;

prove hints before you use them, if some hint are provided.

Remarks. The marking is more strict for take home exams, but we all know that face-

to-face exams have less time and it is more unavoidable to skip-proof on easy facts. In

that situation students may write down the most difficult, technical details first and see

if they have time to make things clear.

Remarks. Later on when you take MATH3060, MATH4010, MATH4050, MATH4060 and

etc, you also need to give lots of details. For example, in MATH3060 you are supposed

to be familiar with how to make use of dense subspace in a function space (over Rn),

like using C∞
0 dense in Lp to conclude that every Lp function can be approximated by a

sequence of C∞
0 function. And then you will learn about Lebesgue theory in MATH4050

and keep using step functions to do approximations. If you skip all the approximation

arguments, you will be very likely to receive a bad grade.
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I promised to write you an exposition to some grad-level mathematics for celebrating the
π-day. If you are eligible for celebrating the White Valentine’s Day, go ahead and don’t
let me know:)

Please note that I am not writing in the style of a solution for a test.

Theorem 4 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and θ ∈

(0, 1). Define 1 ≤ p, q ≤ ∞ by
1

p
=

1− θ

p0
+

θ

p1

and
1

q
=

1− θ

q0
+

θ

q1
.

Let T be a linear map such that T : Lp0 → Lq0 is a linear operator with norm ||T ||p0,q0 = N0

and T : Lp1 → Lq1 is a linear operator with norm ||T ||p1,q1 = N1.

Then, we claim that for any f ∈ Lp0 ∩ Lp1 we have

||Tf ||q ≤ N1−θ
0 N θ

1 ||f ||p.

Remarks. The result is trivial if p = ∞ or if q = 1 so I leave them as exercises.

We assume p0, p1 < ∞ such that the proof can contain a little bit fewer explanation.

Claim 5. In the above setting, we have

||f ||p ≤ ||f |||1−θ
p0

||f ||θp1 .

Proof.

||f ||pp =
∫

|f |p

=

∫
|f |pθ|f |p(1−θ)

≤
(∫

|f |pθ
p1
pθ

) pθ
p1

(∫
|f |p(1−θ)

p0
p(1−θ)

) p(1−θ)
p0

=

(∫
|f |p1

) pθ
p1

(∫
|f |p0

) p(1−θ)
p0

= ||f ||pθp1 ||f ||
p(1−θ)p0.
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Proof of Riesz-Thorin. For 1 ≤ p0, p1 < ∞, we know that continuous compactly sup-

ported functions are dense in Lp0∩Lp1 with respect to the norm ||·||Lp0∩Lp1 = ||·||p0+||·||p1

By compact support, continuity can be extended to uniform continuity, so they can be

approximated by compactly supported step-functions which have only finitely many val-

ues. To be more precise, fix ϵ, then ϵ defines a δ such that |f(x) − f(y)| < ϵ whenever

|x − y| < δ, compactness of domain implies finite open subcovering by balls with radius

δ. Let ϵ be 1
n
we deduce an approximating sequence.

Hence, by density (or we say: by approximation), it is enough to show that ||Tf ||q ≤

N1−θ
0 N θ

1 ||f ||p for any compactly supported step function f .

We demonstrate what is actually happening behind the phrase ‘by density”. It means the

following claim:

Claim 6. If ||Tf ||q ≤ N1−θ
0 N θ

1 ||f ||p for any compactly supported step function f , then

the same inequality holds for all f ∈ Lp0 ∩ Lp1.

Proof. Suppose the if part is true and f ∈ Lp0 ∩ Lp1 , then we have already shown that

there exists a sequence (fn) of compactly supported step functions such that

fn → f

in Lp0 ∩ Lp1 , which means

fn → f

in Lp0 and

fn → f

in Lp1 . Then we can write

||Tf ||q ≤ ||T (f − fn)||q + ||Tfn||q

≤ ||T (f − fn)
1−θ||q0 ||T (f − fn)||θq1 +N1−θ

0 N θ
1 ||fn||p

≤ ||T (f − fn)||1−θ
q0

||T (f − fn)||θq1 +N1−θ
0 N θ

1 ||fn − f ||p +N1−θN θ
1 ||f ||p

≤ ||f − fn||1−θ
p0

N1−θ
0 ||f − fn||θp1N

θ
1 +N1−θ

0 N θ
1 (||f ||p + ||fn − f ||1−θ

p0
||fn − f ||θp1)

= N1−θ
0 N θ

1 (||f ||p + 2||f − fn||1−θ
p0

||f − fn||θp1)
n→∞−−−→ N1−θ

0 N θ
1 ||f ||p.
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Now, our goal is to show ||Tf ||q ≤ N1−θ
0 N θ

1 ||f ||p for any compactly supported step function

f . We recall that by duality (MATH4010 I think) we have

||f ||q = sup
||g||q′≤1

∣∣∣∣∫ gf

∣∣∣∣
where 1

q
+ 1

q′
= 1.

Therefore, it reduces to show ∣∣∣∣∫ gTf

∣∣∣∣ ≤ N1−θ
0 N θ

1

for all compact supported step functions ||f ||p = ||g||q′ = 1.

Write

f =
n∑

j=1

ajχAj

where a1, · · · , an ∈ C and A1, · · · , An are measurable disjoint subsets (at your level it

assume χAi
is always integrable).

Similarly, we write

g =
m∑
l=1

blχBl.

Observe that ||f ||pp =
∑n

j=1 |aj|p|Aj| = 1 and ||g||q
′

q′ =
∑m

l=1 |bl|q
′ |Bl|.

For z ∈ C we define p(z), q′(z) (not a derivative, just symbol q′) by

1

p(z)
=

1− z

p0
+

z

p1

and
1

q′(z)
=

1− z

q0
+

z

q′1
.

We have:

• p(0) = p0, q
′(0) = q′0.

• p(1) = p1, q
′(1) = q′1.

• p(θ) = p, q′(θ) = q′.

Define

fz(x) =

|f(x)|
p

p(z) f(x)
|f(x)| ; f(x) ̸= 0

0 ; f(x) = 0
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gz(x) =

|g(x)|
q′

q′(z) g(x)
|g(x)| ; g(x) ̸= 0

0 ; g(x) = 0

They are compact supported step functions. To be explicit, we expand the expression by

the plugging in the definitions of f, g:

fz(x) =
n∑

j=1

|aj|
p

p(z)
aj
|aj|

χAj

gz(x) =
m∑
l=1

|bl|
q′

q′(z)
bl
|bl|

χBl

As finite sums of step functions, they are bounded.

Now, Tfz ∈ Lq0 ∩ Lq1 is well-defined and can be integrable against the function gz ∈

Lq′0 ∩ Lq′1 .

We set F (z) =
∫
gzTfz, then

F (z) =
n∑

j=1

m∑
l=1

|aj|
p

p(z)
aj
|aj|

|bl|
q′

q′(z)
bl
|bl|

∫
Bl

TχAj

=
n∑

j=1

m∑
l=1

|aj|p(
1−z
p0

+ z
p1

) aj
|aj|

|bl|q(
1−z
q0

+ z
q1

) bl
|bl|

∫
Bl

TχBl

=
∑
j,l

Cj,lγ
z
j γ

z
l

for some Cj,l independent of z and Cj,l, γj, γl ∈ C.

On S = {z ∈ C : 0 ≤ ℜz ≤ 1} we have |γz
j | = γℜz ≤ max{1, γ} and similarly for |γl|.

Wee see that F is bounded on S and continuous as a function of z, because it is just a

finite sum of complex numbers raised to power z. Due to this simple expression, we see

that F is also analytic in the interior S0 of S.

We complete the proof by using Hadamard’s three lines lemma:

Lemma 7 (Hadamard three lines lemma). Let S = {z ∈ C : 0 ≤ ℜz ≤ 1} and F : S → C

be bounded and continuous on S, and analytic in S0. Let Mθ := supy∈R |F (θ+ iy)|. Then

we have

Mθ ≤ M1−θ
0 M θ

1 ∀θ ∈ [0, 1].
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Compute for M0:

|F (iy)| =
∣∣∣∣∫ giyTfiy

∣∣∣∣
≤ ||Tfiy||q0||giy||q′0
≤ N0||fiy||p0||giy||q′0

look into the two norm-terms:

||fiy||p0p0 =
∑∣∣∣∣|aj| p

piy
aj
|aj|

∣∣∣∣p0 |Aj|

=
∑∣∣∣∣|aj|ℜ p

piy
aj
|aj|

∣∣∣∣p0 |Aj|

=
∑

|aj|p|Aj|

= ||f ||pp

because for 1
p(iy)

= 1−iy
p0

+ iy
p1
, the real part is 1

p0
and for complex numbers w, real number

r in general, |rw| = |rℜw+iℑw| = |rℜweir lnℑw| = |rℜw| (if ℑw = 0 then we arrive at the

same conclusion).

Similarly,

||giy||
q′0
q′0
=

∑∣∣∣∣|bl| q′
q′(iy)

bl
|bl|

∣∣∣∣q′0 |Bl|

=
∑∣∣∣∣|bl|ℜ q′

q′(iy)
bl
|bl|

∣∣∣∣q0 |Bl|

=
∑

|bl|q
′|Bl|

= ||g||q
′

q′ .

Hence, M0 ≤ N0||fiy||
p
p0 ||giy||

q′
q′0
q′0
.

Compute for M1:

Again, we note that for 1
p(1+iy)

= 1−1−iy
p0

+ 1+i
p1

, the real part is ℜ 1
p(1+iy)

= 1
p1
. We can

deduce that

||f1+iy||p1p1 = ||f ||pp

and

||g1+iy||
q′1
q′1
= ||g||q

′

q′ .
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So, M1 ≤ N1||f ||
p
p1
p ||g||

q′
q′1

By the three lines lemma, we have Mθ ≤ M1−θ
0 M θ

1 , when z = θ we have F (θ) =
∫
gθTfθ =∫

gTf , recall ||g||q′ = 1, so combine everything above we obtain

||Tf ||q ≤ N1−θ
0 N θ

1 ||f ||
p

p+1
(1−θ)+ p

p1
θ

p = N1−θ
0 N θ

1 |f ||p.

An application of Riesz-Thorin’s theorem: if you can estimate ||f ||∞ by ||u||1 and ||u||∞
for some u, then you can estimate ||f ||∞ by ||u||p for any 1 < p < ∞ with a good
knowledge on the coefficient.

When the domain is compact (finite measure) it might not sound useful to estimate by
||u||p when we can already estimate by ||u||1. However, the p can be useful when we want
to prove some linear operator is of weak type (p, q), 1

p
+ 1

q
= 1, see arXiv:0707.2424 section

9 (you can skip section 1-8).


