MATH2068 Honour Mathematical Analysis II
Mid-term solution
Clive Chan

Typos are unavoidable. Please let me know if you spot any.

e Q1:

— Observe that DT is taking limit from the right and D~ is taking limit from

the left. We may assume DT f(c) > D~ f(c) because, if this is not the case,
we consider the function f(—z) instead of f(x). This reflects the graph with
respect to the y-axis, which means left and right interchanges.

We claim that for any € > 0, there exists v > 0 such that if 0 < § < v then

sup @) = /() <DV f(c)+e

0<|z—c|<é r—==c
Once we have the claim, let 6 — 0 we obtain

lim sup @) = /) < DY f(c) = max{D* f(c), D" f(c)}. (1)

60 0<|z—c|<é r—=c

f@)=1(e)

~—~—. For any

Proof of claim: By definition, D" f(c) := lims_o+ SUP.cpeets
e > 0, there exists 7, > 0 such that if 0 < § < 7, then

sup f@) = o) < D*f(c)+4. (2)

c<x<c+o r—c

By definition, D~ f(c) = lims o+ SUP._scpee f(xx)_f(c). For any € > 0, there
exists 72 > 0 such that if 0 < § < v then
sup f(‘T) —f(C) —Dif(C) < ’D—f(c) —  sup f(l’) —f(C)‘ <.
c—d<z<c Tr—c c—d<z<c r—c
sup M<D_f(c)+5§D+f(c)+5. (3)

c—d<x<c r—c
Choose v = min{~;, 72}, if 0 < § < « then (2), (3) holds at the same time.

That is, for any such 8, D* f(¢) 46 is an upper bound for £2) C( 9 on (c—6,¢),
and is an upper bound for the same ratio on (¢, c+ §).

Note that (¢ — 4, c) (c,e+0)={z:0<|x—c| <d},so DT f(c)+ 0 is an
upper bound for £ ) f(c) on the LHS set = RHS set, i.e. {z:0< |z —¢| <d}.

We obtained
sup ) = fle) < D*f(c)+9

0<|z—c|<d r—=cC

our claim follows.
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Next, we claim that the opposite direction of (1) is true, i.e.

lim sup Mzﬁf(c):max{mf(c),n fle)}. (4)

60 0<|z—c|<é r—=c

Proof of claim: if M is an upper bound for f(x;:ic(c) on 0 < |z —¢| <6, then
since every point satisfying 0 < |x — ¢| < 0 must satisfy ¢ < x < ¢+ 0, M is an

upper bound for % onc<z<c+d Put M =sup., is —f("”:z:f(c)7 we
have for all ¢ < x < ¢+ 9:
1@ =1 @)= 10
0<|z—c|<d r—cC xr—c
and hence
y TE IO )~ £

0<|z—c|<d r—c c<x<ctd r—cC

Take § — 0" the RHS is called D* f(c), so we have
D*f(c) = lim sup f@) =19 < lim sup M
6—=0F cca<ets r—=C 6=0% 0<|z—c|<s r—=c

Combine two claim the inequality signs can be replaced by =. Qla follows.

— For part (b), the limits are D* f(0) = b, D, f(0) = a, D~ f(0) = d, D_f(0) = c.
Those who lost marks in part (b) just simply write down the limits, so I think
you all know the proof.

Make use of sequences such as {m} and that kind of stuft.

e ()2: Suppose g is continuous on [a,b] and ¢ is differentiable on (a,b). Due to this
assumption, we can use mean value theorem: for any p < g € (a,b) there exists

¢ € (p, q) such that g(p) — g(q) = g'(c)(p — a).
Let D be the set of points where ¢’(x) is non-zero.

Suppose D is non-empty and countable. By non-empty, there exists d € D such
that s := ¢’(d) # 0. By countability and (a,b) is not countable as a continuum of
points, D is a proper subset of (a,b). Hence, there exists r € (a,b) \ D. Without
loss of generality, we assume d < r.

[d, r] is a proper subset of [a, b] so the continuity of g on [a, b] inherits to [d, r]. Also,
(d,r) is a proper subset of (a,b) so the differentiability of g on (a,b) inherits to
(d,r). Hence, Darboux theorem can be applied on g on [d,r], i.e. for any z € (0, s)
there exists w € (d,r) such that ¢'(w) = z.

w can be not unique, it’s fine. Since we can assign a w for each given z, we
consider the mapping z +— w(z). For any 21,20 € (d,r), if w(z1) = w(z2) then
21 = ¢ (w(z1)) = ¢’ (w(z3)) = 22, so the map is injective. This implies D contains a
continuum of image set, contradicts countability.

Hence, D cannot be non-empty.

Now we know D = () (which is countable) and hence g has zero derivative everywhere
on (a,b). In particular, the ¢ suggested at the beginning must give ¢’(c) = 0. For
any p < ¢ € (a,b), mean value theorem says there exists ¢ € (p,q) such that

g(p) — g(q) = ¢'(c)(p — q¢) = 0. hence g(p) = g(q) and g is constant.
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e ()3: Counter-example: let f(z) = d,, i.e. f(z) = 1 when z = a and f(z) = 0 if
otherwise. The function z"d, is equal to a9, and you can show that it integrates
to 0.

We claim that if f is continuous and integrable on [a, b], then under the condition
(5) in the test paper, f = 0 holds.

Assume Weierstrass Approximation theorem, i.e. for such f, for any ¢ > 0 there
exists a polynomial such that |f(x) — p(x)| < € for all x € [a, b].

The main idea is, [ f2 = [ fp = 0 by condition (5). If f is not the zero function, say

f(c) > 0 for some ¢ € (a,b), then there exists an open interval I containing ¢ and
contained by (a, b) such that f > k > 0 for some constant k& (Note: k = inf,c; f(x)).

This gives fab f? > |I|k? > 0, contradiction arises.

To be precise, write p =) a,z", then

/f2=/fp=§njan/fx”=o

by condition (5). Write I = (¢ — §,¢ + &) where ¢ is chosen by: since 1 f(c) > 0,
continuity of f at ¢ says there exists § such that if 0 < |z —¢| < § then f(z)— f(c) <
|f(@) = f(e)] < 5f(c). Now let I = (¢ — 6, ¢+ 6), we have k = 5 f(c) as in the main
idea, Finally, [ f? > [, f* > [I|k* = 20k* > 0.



