MATH2068 Honour Mathematical Analysis II

Mid-term solution

Clive Chan

Typos are unavoidable. Please let me know if you spot any.

- Q1:
- Observe that D^{+}is taking limit from the right and D^{-}is taking limit from the left. We may assume $D^{+} f(c) \geq D^{-} f(c)$ because, if this is not the case, we consider the function $f(-x)$ instead of $f(x)$. This reflects the graph with respect to the y-axis, which means left and right interchanges.
We claim that for any $\epsilon>0$, there exists $\gamma>0$ such that if $0<\delta<\gamma$ then

$$
\sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \leq D^{+} f(c)+\epsilon .
$$

Once we have the claim, let $\delta \rightarrow 0$ we obtain

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \leq D^{+} f(c)=\max \left\{D^{+} f(c), D^{-} f(c)\right\} . \tag{1}
\end{equation*}
$$

Proof of claim: By definition, $D^{+} f(c):=\lim _{\delta \rightarrow 0^{+}} \sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}$. For any $\epsilon>0$, there exists $\gamma_{1}>0$ such that if $0<\delta<\gamma_{1}$ then

$$
\begin{gather*}
\sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}-D^{+} f(c) \leq\left|D^{+} f(c)-\sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}\right|<\delta \\
\sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}<D^{+} f(c)+\delta \tag{2}
\end{gather*}
$$

By definition, $D^{-} f(c):=\lim _{\delta \rightarrow 0^{+}} \sup _{c-\delta<x<c} \frac{f(x)-f(c)}{x-c}$. For any $\epsilon>0$, there exists $\gamma_{2}>0$ such that if $0<\delta<\gamma_{2}$ then

$$
\begin{gather*}
\sup _{c-\delta<x<c} \frac{f(x)-f(c)}{x-c}-D^{-} f(c) \leq\left|D^{-} f(c)-\sup _{c-\delta<x<c} \frac{f(x)-f(c)}{x-c}\right|<\delta . \\
\sup _{c-\delta<x<c} \frac{f(x)-f(c)}{x-c}<D^{-} f(c)+\delta \leq D^{+} f(c)+\delta \tag{3}
\end{gather*}
$$

Choose $\gamma=\min \left\{\gamma_{1}, \gamma_{2}\right\}$, if $0<\delta<\gamma$ then (2), (3) holds at the same time. That is, for any such $\delta, D^{+} f(c)+\delta$ is an upper bound for $\frac{f(x)-f(c)}{x-c}$ on $(c-\delta, c)$, and is an upper bound for the same ratio on $(c, c+\delta)$.
Note that $(c-\delta, c) \cup(c, c+\delta)=\{x: 0<|x-c|<\delta\}$, so $D^{+} f(c)+\delta$ is an upper bound for $\frac{f(x)-f(c)}{x-c}$ on the LHS set $=$ RHS set, i.e. $\{x: 0<|x-c|<\delta\}$. We obtained

$$
\sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \leq D^{+} f(c)+\delta,
$$

our claim follows.

Next, we claim that the opposite direction of (1) is true, i.e.

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \geq D^{+} f(c)=\max \left\{D^{+} f(c), D^{-} f(c)\right\} . \tag{4}
\end{equation*}
$$

Proof of claim: if M is an upper bound for $\frac{f(x)-f(c)}{x-c}$ on $0<|x-c|<\delta$, then since every point satisfying $0<|x-c|<\delta$ must satisfy $c<x<c+\delta, M$ is an upper bound for $\frac{f(x)-f(c)}{x-c}$ on $c<x<c+\delta$. Put $M=\sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}$, we have for all $c<x<c+\delta$:

$$
\sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \geq \frac{f(x)-f(c)}{x-c}
$$

and hence

$$
\sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} \geq \sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c}
$$

Take $\delta \rightarrow 0^{+}$the RHS is called $D^{+} f(c)$, so we have

$$
D^{+} f(c)=\lim _{\delta \rightarrow 0^{+}} \sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c} \leq \lim _{\delta \rightarrow 0^{+}} \sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} .
$$

Combine two claim the inequality signs can be replaced by $=$. Q1a follows.

- For part (b), the limits are $D^{+} f(0)=b, D_{+} f(0)=a, D^{-} f(0)=d, D_{-} f(0)=c$. Those who lost marks in part (b) just simply write down the limits, so I think you all know the proof.
Make use of sequences such as $\left\{\frac{1}{2 n \pi+\frac{\pi}{2}}\right\}$ and that kind of stuff.
- Q2: Suppose g is continuous on $[a, b]$ and g is differentiable on (a, b). Due to this assumption, we can use mean value theorem: for any $p<q \in(a, b)$ there exists $c \in(p, q)$ such that $g(p)-g(q)=g^{\prime}(c)(p-q)$.
Let D be the set of points where $g^{\prime}(x)$ is non-zero.
Suppose D is non-empty and countable. By non-empty, there exists $d \in D$ such that $s:=g^{\prime}(d) \neq 0$. By countability and (a, b) is not countable as a continuum of points, D is a proper subset of (a, b). Hence, there exists $r \in(a, b) \backslash D$. Without loss of generality, we assume $d<r$.
$[d, r]$ is a proper subset of $[a, b]$ so the continuity of g on $[a, b]$ inherits to $[d, r]$. Also, (d, r) is a proper subset of (a, b) so the differentiability of g on (a, b) inherits to (d, r). Hence, Darboux theorem can be applied on g on $[d, r]$, i.e. for any $z \in(0, s)$ there exists $w \in(d, r)$ such that $g^{\prime}(w)=z$.
w can be not unique, it's fine. Since we can assign a w for each given z, we consider the mapping $z \mapsto w(z)$. For any $z_{1}, z_{2} \in(d, r)$, if $w\left(z_{1}\right)=w\left(z_{2}\right)$ then $z_{1}=g^{\prime}\left(w\left(z_{1}\right)\right)=g^{\prime}\left(w\left(z_{2}\right)\right)=z_{2}$, so the map is injective. This implies D contains a continuum of image set, contradicts countability.
Hence, D cannot be non-empty.
Now we know $D=\emptyset$ (which is countable) and hence g has zero derivative everywhere on (a, b). In particular, the c suggested at the beginning must give $g^{\prime}(c)=0$. For any $p<q \in(a, b)$, mean value theorem says there exists $c \in(p, q)$ such that $g(p)-g(q)=g^{\prime}(c)(p-q)=0$. hence $g(p)=g(q)$ and g is constant.
- Q3: Counter-example: let $f(x)=\delta_{a}$, i.e. $f(x)=1$ when $x=a$ and $f(x)=0$ if otherwise. The function $x^{n} \delta_{a}$ is equal to $a^{n} \delta_{a}$ and you can show that it integrates to 0 .

We claim that if f is continuous and integrable on $[a, b]$, then under the condition (5) in the test paper, $f \cong 0$ holds.

Assume Weierstrass Approximation theorem, i.e. for such f, for any $\epsilon>0$ there exists a polynomial such that $|f(x)-p(x)|<\epsilon$ for all $x \in[a, b]$.
The main idea is, $\int f^{2}=\int f p=0$ by condition (5). If f is not the zero function, say $f(c)>0$ for some $c \in(a, b)$, then there exists an open interval I containing c and contained by (a, b) such that $f \geq k>0$ for some constant k (Note: $k=\inf _{x \in I} f(x)$). This gives $\int_{a}^{b} f^{2} \geq|I| k^{2}>0$, contradiction arises.
To be precise, write $p=\sum_{n} a_{n} x^{n}$, then

$$
\int f^{2}=\int f p=\sum_{n} a_{n} \int f x^{n}=0
$$

by condition (5). Write $I=(c-\delta, c+\delta)$ where δ is chosen by: since $\frac{1}{2} f(c)>0$, continuity of f at c says there exists δ such that if $0<|x-c|<\delta$ then $f(x)-f(c) \leq$ $|f(x)-f(c)|<\frac{1}{2} f(c)$. Now let $I=(c-\delta, c+\delta)$, we have $k=\frac{1}{2} f(c)$ as in the main idea, Finally, $\int f^{2} \geq \int_{I} f^{2} \geq|I| k^{2}=2 \delta k^{2}>0$.

