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Typos are unavoidable. Please let me know if you spot any.

• Q1:

– Observe that D+ is taking limit from the right and D− is taking limit from
the left. We may assume D+f(c) ≥ D−f(c) because, if this is not the case,
we consider the function f(−x) instead of f(x). This reflects the graph with
respect to the y-axis, which means left and right interchanges.

We claim that for any ϵ > 0, there exists γ > 0 such that if 0 < δ < γ then

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≤ D+f(c) + ϵ.

Once we have the claim, let δ → 0 we obtain

lim
δ→0

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≤ D+f(c) = max{D+f(c), D−f(c)}. (1)

Proof of claim: By definition, D+f(c) := limδ→0+ supc<x<c+δ
f(x)−f(c)

x−c
. For any

ϵ > 0, there exists γ1 > 0 such that if 0 < δ < γ1 then

sup
c<x<c+δ

f(x)− f(c)

x− c
−D+f(c) ≤ |D+f(c)− sup

c<x<c+δ

f(x)− f(c)

x− c
| < δ.

sup
c<x<c+δ

f(x)− f(c)

x− c
< D+f(c) + δ. (2)

By definition, D−f(c) := limδ→0+ supc−δ<x<c
f(x)−f(c)

x−c
. For any ϵ > 0, there

exists γ2 > 0 such that if 0 < δ < γ2 then

sup
c−δ<x<c

f(x)− f(c)

x− c
−D−f(c) ≤ |D−f(c)− sup

c−δ<x<c

f(x)− f(c)

x− c
| < δ.

sup
c−δ<x<c

f(x)− f(c)

x− c
< D−f(c) + δ ≤ D+f(c) + δ. (3)

Choose γ = min{γ1, γ2}, if 0 < δ < γ then (2), (3) holds at the same time.

That is, for any such δ, D+f(c)+ δ is an upper bound for f(x)−f(c)
x−c

on (c− δ, c),
and is an upper bound for the same ratio on (c, c+ δ).

Note that (c − δ, c) ∪ (c, c + δ) = {x : 0 < |x − c| < δ}, so D+f(c) + δ is an

upper bound for f(x)−f(c)
x−c

on the LHS set = RHS set, i.e. {x : 0 < |x− c| < δ}.
We obtained

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≤ D+f(c) + δ,

our claim follows.
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Next, we claim that the opposite direction of (1) is true, i.e.

lim
δ→0

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≥ D+f(c) = max{D+f(c), D−f(c)}. (4)

Proof of claim: if M is an upper bound for f(x)−f(c)
x−c

on 0 < |x − c| < δ, then
since every point satisfying 0 < |x− c| < δ must satisfy c < x < c+ δ, M is an

upper bound for f(x)−f(c)
x−c

on c < x < c + δ. Put M = supc<x<c+δ
f(x)−f(c)

x−c
, we

have for all c < x < c+ δ:

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≥ f(x)− f(c)

x− c

and hence

sup
0<|x−c|<δ

f(x)− f(c)

x− c
≥ sup

c<x<c+δ

f(x)− f(c)

x− c

Take δ → 0+ the RHS is called D+f(c), so we have

D+f(c) = lim
δ→0+

sup
c<x<c+δ

f(x)− f(c)

x− c
≤ lim

δ→0+
sup

0<|x−c|<δ

f(x)− f(c)

x− c
.

Combine two claim the inequality signs can be replaced by =. Q1a follows.

– For part (b), the limits areD+f(0) = b, D+f(0) = a, D−f(0) = d, D−f(0) = c.
Those who lost marks in part (b) just simply write down the limits, so I think
you all know the proof.

Make use of sequences such as { 1
2nπ+π

2
} and that kind of stuff.

• Q2: Suppose g is continuous on [a, b] and g is differentiable on (a, b). Due to this
assumption, we can use mean value theorem: for any p < q ∈ (a, b) there exists
c ∈ (p, q) such that g(p)− g(q) = g′(c)(p− q).

Let D be the set of points where g′(x) is non-zero.

Suppose D is non-empty and countable. By non-empty, there exists d ∈ D such
that s := g′(d) ̸= 0. By countability and (a, b) is not countable as a continuum of
points, D is a proper subset of (a, b). Hence, there exists r ∈ (a, b) \ D. Without
loss of generality, we assume d < r.

[d, r] is a proper subset of [a, b] so the continuity of g on [a, b] inherits to [d, r]. Also,
(d, r) is a proper subset of (a, b) so the differentiability of g on (a, b) inherits to
(d, r). Hence, Darboux theorem can be applied on g on [d, r], i.e. for any z ∈ (0, s)
there exists w ∈ (d, r) such that g′(w) = z.

w can be not unique, it’s fine. Since we can assign a w for each given z, we
consider the mapping z 7→ w(z). For any z1, z2 ∈ (d, r), if w(z1) = w(z2) then
z1 = g′(w(z1)) = g′(w(z2)) = z2, so the map is injective. This implies D contains a
continuum of image set, contradicts countability.

Hence, D cannot be non-empty.

Now we knowD = ∅ (which is countable) and hence g has zero derivative everywhere
on (a, b). In particular, the c suggested at the beginning must give g′(c) = 0. For
any p < q ∈ (a, b), mean value theorem says there exists c ∈ (p, q) such that
g(p)− g(q) = g′(c)(p− q) = 0. hence g(p) = g(q) and g is constant.
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• Q3: Counter-example: let f(x) = δa, i.e. f(x) = 1 when x = a and f(x) = 0 if
otherwise. The function xnδa is equal to anδa and you can show that it integrates
to 0.

We claim that if f is continuous and integrable on [a, b], then under the condition
(5) in the test paper, f ∼= 0 holds.

Assume Weierstrass Approximation theorem, i.e. for such f , for any ϵ > 0 there
exists a polynomial such that |f(x)− p(x)| < ϵ for all x ∈ [a, b].

The main idea is,
∫
f 2 =

∫
fp = 0 by condition (5). If f is not the zero function, say

f(c) > 0 for some c ∈ (a, b), then there exists an open interval I containing c and
contained by (a, b) such that f ≥ k > 0 for some constant k (Note: k = infx∈I f(x)).

This gives
∫ b

a
f 2 ≥ |I|k2 > 0, contradiction arises.

To be precise, write p =
∑

n anx
n, then∫

f 2 =

∫
fp =

∑
n

an

∫
fxn = 0

by condition (5). Write I = (c − δ, c + δ) where δ is chosen by: since 1
2
f(c) > 0,

continuity of f at c says there exists δ such that if 0 < |x−c| < δ then f(x)−f(c) ≤
|f(x)− f(c)| < 1

2
f(c). Now let I = (c− δ, c+ δ), we have k = 1

2
f(c) as in the main

idea, Finally,
∫
f 2 ≥

∫
I
f 2 ≥ |I|k2 = 2δk2 > 0.


