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Theorem 1. Suppose {fn} is a sequence of [a, b] → R functions such that:

• There exists B independent of n such that |fn| ≤ B for all n; and

• fn and f are all Riemann-integrable.

Then

lim
n→∞

∫ b

a

fn =

∫ b

a

f

Proof. Let gn = |f − fn|, then

|
∫ b

a

f −
∫ b

a

fn| ≤
∫ b

a

|f − fn| =
∫ b

a

gn,

gn ≥ 0, gn ≤ 2B and gn is Riemann-integrable on [a, b].

Assume {gn} is decreasing, i.e. {fn} is an increasing sequence.

Fix ϵ > 0, Let hn be a continuous function such that∫ b

a

gn <

∫ b

a

hn +
ϵ

2n

and 0 ≤ hn ≤ gn. The construction of hn is left for the students.

By monotonicity,

0 ≤ gn − hn ≤
n∑

i=1

gi − hi

which implies

0 ≤
∫ b

a

gn − hndx ≤
∑
i

∫ b

a

gi − hi ≤
∑
i

ϵ

2i
= ϵ(1− 1

2n
).

{hn} is continuous, pointwise limit tends to 0 which is continuous on [a, b] and the sequence
is monotone decreasing to 0. By Dini’s theorem {hn} converges to 0 uniformly on [a, b].
Hence

lim
n→0

∫ b

a

hn = 0.

This forces ∫ b

a

gndx = 0

and hence ∫ b

a

fn →
∫ b

a

f.

Consider the general case where {gn} is not monotone: define pn(x) = supk≥0 gn+k(x),
then {pn} is monotone decreasing. Repeat the above argument (left for the students).
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Remarks. My first insight did not lead to this proof. I defined

Sn = {x ∈ [a, b] : f or fn discontinuous at x ∃n}

and cover ∪nSn with open intervals with total length less than ϵ. Since f and fn are
Riemann-integrable, Sn has measure 0 due to Lebesgue integrability criterion. Denote
the open cover by ∪nIn, [a, b]− In is compact and hence f , fn are (uniformly) continuous
on [a, b]− In.

We may define gn = |f − fn| and pn = supk≥0 gn+k such that {pn} is monotone decreasing
to 0. Construct continuous approximations {hn ≤ pn} as above, we can invoke Dini’s
theorem to deduce ∫ b

a

hn → 0

and hence the result follows.

Special thanks to student Mr. Kai-Kwan Lau for interesting discussions on this method.

An alternate proof. The uniform upper bound B in the above bounded convergence the-
orem may be replaced by an integrable function (instead of being a constant). In the
Lebesgue setting, this is known as the Lebesgue Dominated Convergence Theorem.

Assume measure theory, we shall prove like this:

Fix ϵ > 0. Let

En,k = {x ∈ [a, b] : |fn(x)− f(x)| < 1

k
},

then pointwise convergence means:

For all k ∈ N, pick x ∈ [a, b], then there exists some N ∈ N such that if n > N then

|fn(x)− f(x)| < 1

k
.

In other words, for any k ∈ N,

[a, b] = ∪N∈N ∩n>N En,k = lim
N→∞

∩n>NEn,k.

where the latter equations comes from nested sequence. Hence, there exists N(k) such
that

µ{[a, b]− ∩n>N(k)En,k} <
ϵ

2k
.

If
x ∈ ∩k ∩n>N(k) En,k,

then for all k (there exists N(k)) for all n > N(k) we have

|fn(x)− f(x)| < 1

k
.

In other words, on ∩k ∩n>N(k) En,k we have fn → f uniformly.

The measure of [a, b] − ∩k ∩n>N(k) En,k = ∪k([a, b] − ∩n>N(k)En,k) ≤
∑

k
ϵ
2k

= ϵ is small.
Hence, for [exercise: fill in this square bracket to complete the proof] we have∣∣∣∣∫ b

a

fn − f

∣∣∣∣ ≤ ∫ b

a

|fn − f | ≤ (b− a)ϵ+ 2Bϵ

and the result follows.



MATH2068 by topics 3

Corollary 2 (Fatou’s lemma for the Riemann integral). Suppose a non-negative sequence
of Riemann-integrable functions {fn} converge pointwisely to some 0 ≤ f ∈ R[a, b], then

0 ≤
∫ b

a

f(x)dx ≤ lim inf
n→∞

∫ b

a

fn(x)dx

Proof. f(x)−fn(x) ≤ f(x) for all x ∈ [a, b], so (f(x)−fn(x))
+ ≤ f(x). By the dominated

convergence theorem.

lim
n→

∫ b

a

(f(x)− fn(x))
+dx = 0.

Write f = (f − fn) + fn ≤ (f − fn)
+ + fn for all n, so∫ b

a

f(x)dx ≤ lim inf
n→∞

(∫ b

a

(f(x)− fn(x))
+dx+

∫ b

a

fn(x)dx

)
= lim inf

n→∞

∫ b

a

fn(x)dx

where we see that the first limit vanishes.
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