MATH 2068: Honours Mathematical Analysis II: Home Test 1
5:00 pm, 01 Mar 2024

## Important Notice:

\& The answer paper must be submitted before 02 Mar 2024 at 5:00 pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper must include your name and student ID.
§ You are not allowed to resubmit the answer paper again after doing the first submission

## Answer ALL Questions

## 1. (15 points)

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function. For each point $c \in \mathbb{R}$, define the following limits provided they exist.

$$
\begin{align*}
D^{+} f(c) & :=\varlimsup_{x \rightarrow c+} \frac{f(x)-f(c)}{x-c}:=\lim _{\delta \rightarrow 0+} \sup _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c} ;  \tag{1}\\
D_{+} f(c) & :=\varliminf_{x \rightarrow c+} \frac{f(x)-f(c)}{x-c}:=\lim _{\delta \rightarrow 0+} \inf _{c<x<c+\delta} \frac{f(x)-f(c)}{x-c} ; \tag{2}
\end{align*}
$$

Similarly, one can naturally define the following notation.

$$
\begin{equation*}
D^{-} f(c):=\varlimsup_{x \rightarrow c-} \frac{f(x)-f(c)}{x-c} ; \quad \text { and } \quad D_{-} f(c):=\lim _{x \rightarrow c-} \frac{f(x)-f(c)}{x-c} . \tag{3}
\end{equation*}
$$

(i) Show that

$$
\max \left(D^{+} f(c), D^{-} f(c)\right)=\varlimsup_{x \rightarrow c} \frac{f(x)-f(c)}{x-c}:=\lim _{\delta \rightarrow 0+} \sup _{0<|x-c|<\delta} \frac{f(x)-f(c)}{x-c} .
$$

(ii) Let $a<b$ and $c<d$. Put

$$
f(x):= \begin{cases}a x\left(\sin \frac{1}{x}\right)^{2}+b x\left(\cos \frac{1}{x}\right)^{2} & \text { if } x>0  \tag{4}\\ 0 & \text { if } x=0 \\ c x\left(\sin \frac{1}{x}\right)^{2}+d x\left(\cos \frac{1}{x}\right)^{2} & \text { if } x<0\end{cases}
$$

Find $D^{+} f(0) ; D_{+} f(0) ; D_{-} f(0)$ and $D^{-} f(0)$.

## 2. (10 points)

Assume that a function $g$ is continuous on $[a, b]$ and is differentiable on $(a, b)$. If the set $D:=\left\{x \in(a, b): g^{\prime}(x) \neq 0\right\}$ is countable, does it imply that $g$ is a constant function?

## 3. (15 points)

Let $f$ be a Riemann integrable function defined on $[a, b]$. Consider the following condition:

$$
\begin{equation*}
\int_{a}^{b} x^{n} f(x) d x=0 \quad \text { for all positive integers } n=0,1,2 \ldots \tag{5}
\end{equation*}
$$

Discuss the following situation.
Is $f \equiv 0$ on $[a, b]$ under the Condition(5)?
If it is not the case, do you think that which class of functions on $[a, b]$ under the Condition(5) so that $f \equiv 0$ holds?

