MATH 2068: Honours Mathematical Analysis II: Home Test 1 5:00 pm, 01 Mar 2024

Important Notice:

The answer paper must be submitted before 02 Mar 2024 at 5:00 pm.

♠ The answer paper MUST BE sent to the CU Blackboard.

 \bigstar The answer paper must include your name and student ID.

 \S You are not allowed to resubmit the answer paper again after doing the first submission

Answer ALL Questions

1. (15 points)

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. For each point $c \in \mathbb{R}$, define the following limits provided they exist.

$$D^{+}f(c) := \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} := \lim_{\delta \to 0^{+}} \sup_{c < x < c + \delta} \frac{f(x) - f(c)}{x - c};$$
(1)

$$D_{+}f(c) := \lim_{x \to c+} \frac{f(x) - f(c)}{x - c} := \lim_{\delta \to 0+} \inf_{c < x < c + \delta} \frac{f(x) - f(c)}{x - c};$$
(2)

Similarly, one can naturally define the following notation.

$$D^{-}f(c) := \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c}; \quad and \quad D_{-}f(c) := \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c}.$$
 (3)

(i) Show that

$$\max(D^+ f(c), D^- f(c)) = \overline{\lim_{x \to c}} \frac{f(x) - f(c)}{x - c} := \lim_{\delta \to 0^+} \sup_{0 < |x - c| < \delta} \frac{f(x) - f(c)}{x - c}.$$

(ii) Let a < b and c < d. Put

$$f(x) := \begin{cases} ax(\sin\frac{1}{x})^2 + bx(\cos\frac{1}{x})^2 & \text{if } x > 0; \\ 0 & \text{if } x = 0; \\ cx(\sin\frac{1}{x})^2 + dx(\cos\frac{1}{x})^2 & \text{if } x < 0. \end{cases}$$
(4)

Find $D^+f(0); D_+f(0); D_-f(0)$ and $D^-f(0)$.

2. (10 points)

Assume that a function g is continuous on [a, b] and is differentiable on (a, b). If the set $D := \{x \in (a, b) : g'(x) \neq 0\}$ is countable, does it imply that g is a constant function?

3. (15 points)

Let f be a Riemann integrable function defined on [a, b]. Consider the following condition:

$$\int_{a}^{b} x^{n} f(x) dx = 0 \quad \text{for all positive integers } n = 0, 1, 2....$$
(5)

Discuss the following situation.

Is $f \equiv 0$ on [a, b] under the Condition(5)?

If it is not the case, do you think that which class of functions on [a, b] under the Condition(5) so that $f \equiv 0$ holds?

*** END OF PAPER ***