MATH 2068 Mathematical Analysis II
 2023-24 Term 2
 Suggested Solution to Homework 8

8.2-1 Show that the sequence $\left(x^{n} /\left(1+x^{n}\right)\right)$ does not converge uniformly on $[0,2]$ by showing that the limit function is not continuous on $[0,2]$.

Solution. It is easy to see that

$$
\lim \left(x^{n} /\left(1+x^{n}\right)\right)=f(x):= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 / 2 & \text { if } x=1 \\ 1 & \text { if } 1<x \leq 2\end{cases}
$$

If the sequence $\left(x^{n} /\left(1+x^{n}\right)\right)$ converges uniformly on $[0,2]$, then the limit function f is also continuous on $[0,2]$, by Theorem 8.2.2 of the textbook. However, f is clearly discontinuous at 1 . Therefore the sequence $\left(x^{n} /\left(1+x^{n}\right)\right)$ does not converge uniformly on [0, 2].
8.2-8 Let $f_{n}(x):=n x /\left(1+n x^{2}\right)$ for $x \in A:=[0, \infty)$. Show that each f_{n} is bounded on A, but the pointwise limit f of the sequence is not bounded on A. Does $\left(f_{n}\right)$ converge uniformly to f on A ?

Solution. By the inequality $2 x y \leq x^{2}+y^{2}$ for $x, y \in \mathbb{R}$, we have, for any $n \in \mathbb{N}$,

$$
0 \leq f_{n}(x)=\frac{n x}{1+n x^{2}} \leq \frac{1}{2} \cdot \frac{1+n^{2} x^{2}}{1+n x^{2}} \leq \frac{n+n^{2} x^{2}}{1+n x^{2}}=n \quad \text { for any } x \in A .
$$

Hence each f_{n} is bounded on A.
On the other hand, the pointwise limit of the sequence is

$$
\lim f_{n}(x)=\lim \left(\frac{n x}{1+n x^{2}}\right)=\lim \left(\frac{x}{1 / n+x^{2}}\right)=f(x):= \begin{cases}0 & \text { if } x=0 \\ 1 / x & \text { if } x>0\end{cases}
$$

Clearly f is unbounded on A since $\lim _{x \rightarrow 0^{+}} 1 / x=+\infty$.
Finally $\left(f_{n}\right)$ does not converge uniformly to f on A. Otherwise, by the continuity of each f_{n} and Theorem 8.2.2 in the textbook, f must be continuous on A, which is impossible.
8.2-12 Show that $\lim \int_{1}^{2} e^{-n x^{2}} d x=0$.

Solution. Note that for all $n \in \mathbb{N}$ and $x \in[1,2]$,

$$
0 \leq e^{-n x^{2}} \leq \frac{1}{n x^{2}} \leq \frac{1}{n}
$$

Thus the sequence of continuous functions $\left(e^{-n x^{2}}\right)$ converges uniformly to the zero function on [1,2]. By Theorem 8.2.4 in the textbook,

$$
\lim \int_{1}^{2} e^{-n x^{2}} d x=\int_{1}^{2} 0 d x=0
$$

