MATH 2068 Mathematical Analysis II
 2023-24 Term 2
 Suggested Solution to Homework 7

8.1-4 Evaluate $\lim \left(x^{n} /\left(1+x^{n}\right)\right)$ for $x \in \mathbb{R}, x \geq 0$.

Solution. If $0 \leq x<1$, then $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=0 /(1+0)=0$.
If $x=1$, then $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=1 /(1+1)=1 / 2$.
If $x>1$, then $\lim \left(x^{n} /\left(1+x^{n}\right)\right)=\lim \left(1 /\left(x^{-n}+1\right)\right)=1 /(0+1)=1$.
8.1-14 Show that if $0<b<1$, then the convergence of the sequence in Exercise 4 is uniform on the interval $[0, b]$, but is not uniform on the interval $[0,1]$.

Solution. Let $\left(f_{n}\right)$ be the sequence of functions considered in Exercise 4, and let f be its limit. Since $0 \leq f_{n}(x)=\frac{x^{n}}{1+x^{n}} \leq \frac{b^{n}}{1+0}=b^{n}$ for any $x \in[0, b]$, we have

$$
\left\|f_{n}-0\right\|_{[0, b]} \leq b^{n} \quad \text { for all } n \in \mathbb{N}
$$

As $0<b<1$, we have $\lim \left(b^{n}\right)=0$ and so $\lim \left\|f_{n}-0\right\|_{[0, b]}=0$. Therefore $\left(f_{n}\right)$ converges uniformly to $f \equiv 0$ on $[0, b]$.
On the other hand, for all $n \in \mathbb{N}$,

$$
\left\|f_{n}-f\right\|_{[0,1]} \geq\left|f_{n}\left(2^{-1 / n}\right)-f\left(2^{-1 / n}\right)\right|=\left|\frac{1 / 2}{1+1 / 2}-0\right|=\frac{1}{3} .
$$

So $\left\|f_{n}-f\right\|_{[0,1]} \nrightarrow 0$ as $n \rightarrow \infty$. Therefore $\left(f_{n}\right)$ does not converge uniformly to f on $[0,1]$.
8.1-22 Show that if $f_{n}(x):=x+1 / n$ and $f(x):=x$ for $x \in \mathbb{R}$, then $\left(f_{n}\right)$ converges uniformly on \mathbb{R} to f, but the sequence (f_{n}^{2}) does not converge uniformly on \mathbb{R}. (Thus the product of uniformly convergent sequences of functions may not converge uniformly.)

Solution. Since $\left\|f_{n}-f\right\|_{\mathbb{R}}=1 / n \rightarrow 0$ as $n \rightarrow \infty,\left(f_{n}\right)$ converges uniformly on \mathbb{R} to f.
On the other hand, for all $n \in \mathbb{N}$,

$$
f_{n}^{2}(x)-f^{2}(x)=\left(x+\frac{1}{n}\right)^{2}-x^{2}=\frac{2 x}{n}+\frac{1}{n^{2}} \quad \text { for any } x \in \mathbb{R}
$$

so that

$$
\left\|f_{n}^{2}-f^{2}\right\|_{\mathbb{R}} \geq\left|f_{n}^{2}(n)-f^{2}(n)\right|=2+\frac{1}{n^{2}} \geq 2
$$

Therefore $\left(f_{n}^{2}\right)$ does not converge uniformly to f^{2} on \mathbb{R}. And so $\left(f_{n}^{2}\right)$ does not converge uniformly on \mathbb{R} because f^{2} is the pointwise limit of $\left(f_{n}^{2}\right)$.

