MATH 2068 Mathematical Analysis II 2023-24 Term 2

Suggested Solution to Homework 7

8.1-4 Evaluate $\lim (x^n/(1+x^n))$ for $x \in \mathbb{R}, x \geq 0$.

Solution. If $0 \le x < 1$, then $\lim (x^n/(1+x^n)) = 0/(1+0) = 0$.

If x = 1, then $\lim (x^n/(1+x^n)) = 1/(1+1) = 1/2$.

If
$$x > 1$$
, then $\lim_{n \to \infty} (x^n/(1+x^n)) = \lim_{n \to \infty} (1/(x^{-n}+1)) = 1/(0+1) = 1$.

8.1-14 Show that if 0 < b < 1, then the convergence of the sequence in Exercise 4 is uniform on the interval [0, b], but is not uniform on the interval [0, 1].

Solution. Let (f_n) be the sequence of functions considered in Exercise 4, and let f be its limit. Since $0 \le f_n(x) = \frac{x^n}{1+x^n} \le \frac{b^n}{1+0} = b^n$ for any $x \in [0,b]$, we have

$$||f_n - 0||_{[0,b]} \le b^n$$
 for all $n \in \mathbb{N}$.

As 0 < b < 1, we have $\lim(b^n) = 0$ and so $\lim \|f_n - 0\|_{[0,b]} = 0$. Therefore (f_n) converges uniformly to $f \equiv 0$ on [0,b].

On the other hand, for all $n \in \mathbb{N}$,

$$||f_n - f||_{[0,1]} \ge |f_n(2^{-1/n}) - f(2^{-1/n})| = \left|\frac{1/2}{1 + 1/2} - 0\right| = \frac{1}{3}.$$

So $||f_n - f||_{[0,1]} \not\to 0$ as $n \to \infty$. Therefore (f_n) does not converge uniformly to f on [0,1].

8.1-22 Show that if $f_n(x) := x + 1/n$ and f(x) := x for $x \in \mathbb{R}$, then (f_n) converges uniformly on \mathbb{R} to f, but the sequence (f_n^2) does not converge uniformly on \mathbb{R} . (Thus the product of uniformly convergent sequences of functions may not converge uniformly.)

Solution. Since $||f_n - f||_{\mathbb{R}} = 1/n \to 0$ as $n \to \infty$, (f_n) converges uniformly on \mathbb{R} to f.

On the other hand, for all $n \in \mathbb{N}$,

$$f_n^2(x) - f^2(x) = \left(x + \frac{1}{n}\right)^2 - x^2 = \frac{2x}{n} + \frac{1}{n^2}$$
 for any $x \in \mathbb{R}$,

so that

$$||f_n^2 - f^2||_{\mathbb{R}} \ge |f_n^2(n) - f^2(n)| = 2 + \frac{1}{n^2} \ge 2.$$

Therefore (f_n^2) does not converge uniformly to f^2 on \mathbb{R} . And so (f_n^2) does not converge uniformly on \mathbb{R} because f^2 is the pointwise limit of (f_n^2) .