MATH 2068 Mathematical Analysis II
 2023-24 Term 2
 Suggested Solution to Homework 6

7.3-15 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $c>0$, define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x):=\int_{x-c}^{x+c} f(t) d t$. Show that g is differentiable on \mathbb{R} and find $g^{\prime}(x)$.

Solution. Since f is continuous on \mathbb{R}, it is Riemann integrable on any closed bounded interval by Proposition 2.13. By Proposition 2.18, for any $x \in \mathbb{R}$,

$$
g(x)=\int_{x-c}^{x+c} f(t) d t=\int_{c}^{x+c} f(t) d t-\int_{c}^{x-c} f(t) d t .
$$

Since f is continuous on any closed bounded interval $[a, b]$, Fundamental Theorem of Calculus (Theorem 2.25(ii)) implies that $F(x):=\int_{c}^{x} f(t) d t$ is differentiable on (a, b) with $F^{\prime}=f$ on (a, b). As this is true for any $[a, b] \subseteq \mathbb{R}, F$ is differentiable on \mathbb{R}. It then follows from Chain Rule (Proposition 1.6) that $g(x)=F(x+c)-F(x-c)$ is also differentiable on \mathbb{R} and that

$$
g^{\prime}(x)=F^{\prime}(x+c) \cdot(x+c)^{\prime}-F^{\prime}(x-c) \cdot(x-c)^{\prime}=f(x+c)-f(x-c) \quad \text { for } x \in \mathbb{R} .
$$

7.3-17 Let $J:=[\alpha, \beta]$, let $\varphi: J \rightarrow \mathbb{R}$ have a continuous derivative on J, and let $f: I \rightarrow \mathbb{R}$ be continuous on an interval I containing $\varphi(J)$.
Use the following argument to prove the Substitution Theorem 7.3.8.
Define $F(u):=\int_{\varphi(\alpha)}^{u} f(x) d x$ for $u \in I$, and $H(t):=F(\varphi(t))$ for $t \in J$. Show that $H^{\prime}(t)=$ $f(\varphi(t)) \varphi^{\prime}(t)$ for $t \in J$ and that

$$
\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) d x=F(\varphi(\beta))=H(\beta)=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) d t .
$$

Solution. Write $I=[a, b]$. Since f is continuous on $[a, b]$, Fundamental Theorem of Calculus (Theorem 2.25(ii)) implies that $F(u)$ is differentiable on (a, b) and $F^{\prime}=f$ on (a, b). By Chain Rule (Proposition 1.6), $H=F \circ \varphi$ is differentiable on J and

$$
H^{\prime}(t)=F^{\prime}(\varphi(t)) \varphi^{\prime}(t) \quad \text { for } t \in J .
$$

Hence, by Fundamental Theorem of Calculus (Theorem 2.25(i)) again,

$$
\int_{\alpha}^{\beta} F^{\prime}(\varphi(t)) \varphi^{\prime}(t) d t=\int_{\alpha}^{\beta} H^{\prime}(t) d t=H(\beta)-H(\alpha) .
$$

Since $H(\alpha)=\int_{\varphi(\alpha)}^{\varphi(\alpha)} f(x) d x=0$, we have

$$
\int_{\alpha}^{\beta} F^{\prime}(\varphi(t)) \varphi^{\prime}(t) d t=\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) d x .
$$

