MATH 2068 Mathematical Analysis II
 2023-24 Term 2
 Suggested Solution to Homework 5

7.2-12 Show that $g(x):=\sin (1 / x)$ for $x \in(0,1]$ and $g(0):=0$ belongs to $\mathcal{R}[0,1]$.

Solution. Clearly $|g(x)| \leq 1$ for all $x \in[0,1]$.
Let $\varepsilon>0$. Choose $c \in(0,1)$ such that $c<\varepsilon / 4$. On $[c, 1], g(x)=\sin (1 / x)$ is continuous, and hence $g \in \mathcal{R}[c, 1]$ by Proposition 2.13. By Theorem 2.10, there is a partition $P: c=x_{0}<x_{1}<$ $\cdots<x_{n}=1$ on $[c, 1]$ such that

$$
0 \leq U(g, P)-L(g, P)=\sum_{i=1}^{n} \omega_{i}(g, P) \Delta x_{i}<\varepsilon / 2,
$$

where $\omega_{i}(g, P):=\sup \left\{\left|g(x)-g\left(x^{\prime}\right)\right|: x, x^{\prime} \in\left[x_{i-1}, x_{i}\right]\right\}$. Now $P^{\prime}: 0=: x_{-1}<x_{0}=c<x_{1}<\cdots<$ $x_{n}=1$ is a partition on $[0,1]$ that satisfies

$$
\begin{aligned}
0 \leq U\left(g, P^{\prime}\right)-L\left(g, P^{\prime}\right) & =\sum_{i=0}^{n} \omega_{i}\left(g, P^{\prime}\right) \Delta x_{i} \\
& =\sup \left\{\left|g(x)-g\left(x^{\prime}\right)\right|: x, x^{\prime} \in[0, c]\right\}(c-0)+\sum_{i=1}^{n} \omega_{i}(g, P) \Delta x_{i} \\
& <2(\varepsilon / 4)+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

By Theorem 2.10 again, $g \in \mathcal{R}[0,1]$.
7.3-22 Let $h:[0,1] \rightarrow \mathbb{R}$ be Thomae's function and let sgn be the signum function. Show that the composite function sgn $\circ h$ is not Riemann integrable on $[0,1]$.

Solution. Note that the composite function sgn $\circ h$ is Dirichlet's function, which is given by

$$
f(x):= \begin{cases}1 & \text { if } x \in[0,1] \cap \mathbb{Q}, \\ 0 & \text { if } x \in[0,1] \backslash \mathbb{Q} .\end{cases}
$$

We will show that $f \notin \mathcal{R}[0,1]$. Let $P: 0=x_{0}<x_{1}<\cdots<x_{n}=1$ be an arbitrary partition on $[0,1]$. Since both rational numbers and irrational numbers are dense, for each $i=1, \ldots, n$, we can find $r_{i} \in \mathbb{Q}$ and $q_{i} \in \mathbb{R} \backslash \mathbb{Q}$ such that $r_{i}, q_{i} \in\left(x_{i-1}, x_{i}\right)$. Then

$$
\omega_{i}(f, P)=\sup \left\{\left|f(x)-f\left(x^{\prime}\right)\right|: x, x^{\prime} \in\left[x_{i-1}, x_{i}\right]\right\} \geq\left|f\left(r_{i}\right)-f\left(q_{i}\right)\right|=1 \quad \text { for } i=1, \ldots, n
$$

and so

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n} \omega_{i}(f, P) \Delta x_{i} \geq \sum_{i=1}^{n} \Delta x_{i}=1
$$

By Theorem 2.10, $f \notin \mathcal{R}[0,1]$.

