MATH 2068 Mathematical Analysis I
 2023-24 Term 2
 Suggested Solution to Homework 4

7.2-8 Suppose that f is continuous on $[a, b]$, that $f(x) \geq 0$ for all $x \in[a, b]$ and that $\int_{a}^{b} f=0$. Prove that $f(x)=0$ for all $x \in[a, b]$.

Solution. Suppose $f\left(x_{0}\right)>0$ for some $x_{0} \in[a, b]$. Since f is continuous on $[a, b]$, we can further assume that $x_{0} \in(a, b)$. Then there is $\delta>0$ such that $a<x_{0}-\delta<x_{0}+\delta<b$ and that

$$
f(x)>f\left(x_{0}\right) / 2=: m \quad \text { for any } x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

Now, by Proposition 2.14 and 2.18 , we have

$$
\begin{aligned}
\int_{a}^{b} f & =\int_{a}^{x_{0}-\delta} f+\int_{x_{0}-\delta}^{x_{0}+\delta} f+\int_{x_{0}+\delta}^{b} f \\
& \geq 0+\int_{x_{0}-\delta}^{x_{0}+\delta} m+0 \\
& =2 m \delta>0
\end{aligned}
$$

which is a contradiction.
7.2-10 If f and g are continuous on $[a, b]$ and if $\int_{a}^{b} f=\int_{a}^{b} g$, prove that there exists $c \in[a, b]$ such that $f(c)=g(c)$.

Solution. Suppose $f(x) \neq g(x)$ for any $x \in[a, b]$. Then the Intermediate Value Theorem implies that either $f-g>0$ or $g-f>0$ on $[a, b]$. Together with $\int_{a}^{b}(f-g)=\int_{a}^{b} f-\int_{a}^{b} g=0$, Exercise 7.2-8 implies that $f-g=0$ on $[a, b]$, which contradicts the assumption at the beginning.
7.2-18 Let f be continuous on $[a, b]$, let $f(x) \geq 0$ for $x \in[a, b]$, and let $M_{n}:=\left(\int_{a}^{b} f^{n}\right)^{1 / n}$. Show that $\lim \left(M_{n}\right)=\sup \{f(x): x \in[a, b]\}$.

Solution. Denote $\|f\|_{\infty}=\sup \{f(x): x \in[a, b]\}$. Without loss of generality, we may assume that $\|f\|_{\infty}>0$.

Let $0<\varepsilon<\|f\|_{\infty}$. By definition of supremum, there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>\|f\|_{\infty}-\varepsilon / 2$. Since f is continuous at x_{0}, there is a subinterval $[c, d] \subseteq[a, b]$ such that

$$
f(x)>f\left(x_{0}\right)-\varepsilon / 2 \geq\|f\|_{\infty}-\varepsilon>0 \quad \text { for any } x \in[c, d]
$$

Now

$$
\int_{a}^{b} f^{n} \geq \int_{c}^{d} f^{n} \geq \int_{c}^{d}\left(\|f\|_{\infty}-\varepsilon\right)^{n}=(d-c)\left(\|f\|_{\infty}-\varepsilon\right)^{n}
$$

And thus,

$$
(d-c)^{1 / n}\left(\|f\|_{\infty}-\varepsilon\right) \leq M_{n}=\left(\int_{a}^{b} f^{n}\right)^{1 / n} \leq(b-a)^{1 / n}\|f\|_{\infty}
$$

Passing $n \rightarrow \infty$ yields

$$
\|f\|_{\infty}-\varepsilon \leq \liminf _{n} M_{n} \leq \underset{n}{\limsup } M_{n} \leq\|f\|_{\infty}
$$

Since $\varepsilon>0$ can be arbitrarily small, we have $\liminf \left(M_{n}\right)=\lim \sup \left(M_{n}\right)=\|f\|_{\infty}$, that is

$$
\lim \left(M_{n}\right)=\|f\|_{\infty}=\sup \{f(x): x \in[a, b]\} .
$$

