MATH 2068 Mathematical Analysis I
 2023-24 Term 2
 Suggested Solution to Homework 3

6.4-10 Let $h(x):=e^{-1 / x^{2}}$ for $x \neq 0$ and $h(0):=0$. Show that $h^{(n)}(0)=0$ for all $n \in \mathbb{N}$. Conclude that the remainder term in Taylor's Theorem for $x_{0}=0$ does not converge to zero as $n \rightarrow \infty$ for $x \neq 0$.

Solution. First, we show that $\lim _{x \rightarrow 0} h(x) / x^{k}=0$ for any $k \in \mathbb{N}$. By successive application of L'Hospital's Rule,

$$
\lim _{y \rightarrow+\infty} \frac{y^{k}}{e^{y}}=\lim _{y \rightarrow+\infty} \frac{k y^{k-1}}{e^{y}}=\cdots=\lim _{y \rightarrow+\infty} \frac{k!}{e^{y}}=0 \quad \text { for any } k \in \mathbb{N} .
$$

Let $y=1 / x^{2}$. Then $y \rightarrow+\infty$ as $x \rightarrow 0$. Hence, for any $k \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{h(x)}{x^{k}}=\lim _{x \rightarrow 0} \frac{\left(1 / x^{2}\right)^{k}}{e^{1 / x^{2}}} \cdot x^{k}=0 \tag{*}
\end{equation*}
$$

Next, we calculate $h^{(n)}(x)$ for $x \neq 0$. Clearly $h(x)=e^{-1 / x^{2}}$ is infinitely differentiable for $x \neq 0$. By applying Leibniz's rule to $h^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}=\frac{2}{x^{3}} h(x)$, we have

$$
\begin{equation*}
h^{(n+1)}(x)=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{2}{x^{3}}\right)^{(n-k)} h^{(k)}(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k} \frac{(n-k+2)!}{x^{n-k+3}} h^{(k)}(x) \tag{**}
\end{equation*}
$$

for any $x \neq 0$ and integer $n \geq 0$.
Now, we prove by induction on n that
(i) $\lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x^{m}}$ for any $m \in \mathbb{N}$;
(ii) $h^{(n)}(0)=0$.

The case $n=0$ follows immediately from (*). Suppose (i) and (ii) are true for n. Then ($* *$) gives

$$
\lim _{x \rightarrow 0} \frac{h^{(n+1)}(x)}{x^{m}}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}(n-k+2)!\left(\lim _{x \rightarrow 0} \frac{h^{(k)}(x)}{x^{n-k+3+m}}\right)=0 .
$$

Moreover,

$$
h^{(n+1)}(0)=\lim _{x \rightarrow 0} \frac{h^{(n)}(x)-h^{(n)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{h^{(n)}(x)}{x}=0 .
$$

This completes the induction.
Finally, the remainder term in Taylor's Theorem is given by

$$
R_{n}(x)=h(x)-\sum_{k=0}^{n} \frac{h^{(k)}(0)}{k!} x^{k}=h(x),
$$

and so $\lim _{x \rightarrow 0} R_{n+1}(x)=h(x) \neq 0$ for $x \neq 0$.
7.1-15 If $f \in \mathcal{R}[a, b]$ and $c \in \mathbb{R}$, we define g on $[a+c, b+c]$ by $g(y):=f(y-c)$. Prove that $g \in \mathcal{R}[a+c, b+c]$ and that $\int_{a+c}^{b+c} g=\int_{a}^{b} f$. The function g is called the c-translate of f.

Solution. If $\dot{\mathcal{P}}:=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ is a tagged partition of $[a+c, b+c]$, we define a tagged partition of $[a, b]$ by $\dot{\mathcal{P}}_{c}:=\left\{\left(\left[x_{i-1}-c, x_{i}-c\right], t_{i}-c\right)\right\}_{i=1}^{n}$. Clearly $\left\|\dot{\mathcal{P}}_{c}\right\|=\|\dot{\mathcal{P}}\|$. Moreover,

$$
S(g ; \dot{\mathcal{P}})=\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} f\left(t_{i}-c\right)\left(\left(x_{i}-c\right)-\left(x_{i-1}-c\right)\right)=S\left(f ; \dot{\mathcal{P}}_{c}\right)
$$

Let $\varepsilon>0$. Since $f \in \mathcal{R}[a, b]$, there exists $\delta>0$ such that if $\dot{\mathcal{Q}}$ is any tagged partition of $[a, b]$ with $\|\dot{\mathcal{Q}}\|<\delta$, then

$$
\left|S(f ; \dot{\mathcal{Q}})-\int_{a}^{b} f\right|<\varepsilon
$$

Now, if $\dot{\mathcal{P}}:=\left\{\left(\left[x_{i-1}, x_{i}\right], t_{i}\right)\right\}_{i=1}^{n}$ is a tagged partition of $[a+c, b+c]$ with $\|\dot{\mathcal{P}}\|<\delta$, then $\dot{\mathcal{P}}_{c}$ is a tagged partition of $[a, b]$ with $\left\|\dot{\mathcal{P}}_{c}\right\|=\|\dot{\mathcal{P}}\|<\delta$, and that

$$
\left|S(g ; \dot{\mathcal{P}})-\int_{a}^{b} f\right|=\left|S\left(f ; \dot{\mathcal{P}}_{c}\right)-\int_{a}^{b} f\right|<\varepsilon
$$

Therefore, $g \in \mathcal{R}[a+c, b+c]$ and $\int_{a+c}^{b+c} g=\int_{a}^{b} f$.

