MATH 2068 Mathematical Analysis I
 2023-24 Term 2
 Suggested Solution to Homework 2

6.2-13 Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be differentiable on I. Show that if f^{\prime} is positive on I, then f is strictly increasing on I.

Solution. Let $a, b \in I$ such that $a<b$. Since f is differentiable on I, f is continuous on $[a, b]$ and differentiable on (a, b). By Mean Value Theorem, there exists $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

By assumption f^{\prime} is positive on I, so the above gives $f(b)>f(a)$. As $a<b$ are arbitrary points in I, we conclude that f is strictly increasing on I.
6.2-16 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable on $(0, \infty)$ and assume that $f^{\prime}(x) \rightarrow b$ as $x \rightarrow \infty$.
(a) Show that for any $h>0$, we have $\lim _{x \rightarrow \infty}(f(x+h)-f(x)) / h=b$.
(b) Show that if $f(x) \rightarrow a$ as $x \rightarrow \infty$, then $b=0$.
(c) Show that $\lim _{x \rightarrow \infty}(f(x) / x)=b$.

Solution. (a) Let $\varepsilon>0$. Since $f^{\prime}(x) \rightarrow b$ as $x \rightarrow \infty$, there exists $c>0$ such that

$$
\left|f^{\prime}(x)-b\right|<\varepsilon / 3 \quad \text { whenever } x>c .
$$

Suppose $x>c$ and $h>0$. Since f is continuous on $[x, x+h]$ and differentiable on $(x, x+h)$, there exists $\xi \in(x, x+h)$ such that

$$
\frac{f(x+h)-f(x)}{h}=f^{\prime}(\xi)
$$

As $\xi>x>c$, we have

$$
\left|\frac{f(x+h)-f(x)}{h}-b\right|=\left|f^{\prime}(\xi)-b\right|<\varepsilon .
$$

Therefore $\lim _{x \rightarrow \infty}(f(x+h)-f(x)) / h=b$.
(b) The assumption implies that, for any $h>0, \lim _{x \rightarrow \infty} f(x+h)=\lim _{x \rightarrow \infty} f(x)=a$. Hence

$$
b=\lim _{x \rightarrow \infty} \frac{f(x+h)-f(x)}{h}=\frac{a-a}{h}=0 .
$$

(c) Let $\varepsilon>0$. Since $\lim _{x \rightarrow \infty} f^{\prime}(x)=b$, there is $c>0$ such that

$$
\left|f^{\prime}(x)-b\right|<\varepsilon / 3 \quad \text { whenever } x>c
$$

By Mean Value Theorem, for any $x>c$, there is $\xi_{x} \in(c, x)$ such that

$$
f(x)-f(c)=f^{\prime}\left(\xi_{x}\right)(x-c) .
$$

Thus

$$
\frac{f(x)}{x}-b=\left(f^{\prime}\left(\xi_{x}\right)-b\right)\left(1-\frac{c}{x}\right)-\frac{b c}{x}+\frac{f(c)}{x} .
$$

Let $M=\max \{|f(c)|, c(|b|+1)\}$. Now if $x>\max \{3 M / \varepsilon, c\}$, then $\xi_{x}>c$ and hence

$$
\begin{aligned}
\left|\frac{f(x)}{x}-b\right| & \leq\left|f^{\prime}\left(\xi_{x}\right)-b\right|\left(1-\frac{c}{x}\right)+\frac{c|b|}{x}+\frac{|f(c)|}{x} \\
& <\varepsilon / 3 \cdot 1+M \cdot \frac{\varepsilon}{3 M}+M \cdot \frac{\varepsilon}{3 M} \\
& =\varepsilon .
\end{aligned}
$$

Therefore $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=b$.
6.4-4 Show that if $x>0$, then $1+\frac{1}{2} x-\frac{1}{8} x^{2} \leq \sqrt{1+x} \leq 1+\frac{1}{2} x$.

Solution. Let $f(x)=\sqrt{1+x}$. Then, for any $x>-1$,

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{1+x}}, \quad f^{\prime \prime}(x)=-\frac{1}{4(1+x)^{3 / 2}}, \quad f^{\prime \prime \prime}(x)=\frac{3}{8(1+x)^{5 / 2}} .
$$

Fix $x>0$. By Taylor's Theorem, there exists $c_{1} \in(0, x)$ such that

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}\left(c_{1}\right)}{2!}(x-0)^{2} \\
& =1+\frac{1}{2} x-\frac{1}{8\left(1+c_{1}\right)^{3 / 2}} x^{2} .
\end{aligned}
$$

Since $-\frac{1}{8\left(1+c_{1}\right)^{3 / 2}} x^{2}<0$, we have $\sqrt{1+x} \leq 1+\frac{1}{2} x$.
Similarly, there exists $c_{2} \in(0, x)$ such that

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0)(x-0)+\frac{f^{\prime \prime}(0)}{2!}(x-0)^{2}+\frac{f^{\prime \prime \prime}\left(c_{2}\right)}{3!}(x-0)^{3} \\
& =1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16\left(1+c_{2}\right)^{5 / 2}} x^{3} .
\end{aligned}
$$

Since $\frac{1}{16\left(1+c_{2}\right)^{5 / 2}} x^{3}>0$, we have $1+\frac{1}{2} x-\frac{1}{8} x^{2} \leq \sqrt{1+x}$.

