MATH 2068 Mathematical Analysis I
 2023-24 Term 2
 Suggested Solution to Homework 1

6.1-12 If $r>0$ is a rational number, let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x):=x^{r} \sin (1 / x)$ for $x \neq 0$, and $f(0):=0$. Determine those values of r for which $f^{\prime}(0)$ exists.

Solution. Since x^{r} may not be defined for $x<0$, we assume that $f(x)=|x|^{r} \sin (1 / x)$ for $x \neq 0$. For $x \neq 0$, we have

$$
\frac{f(x)-f(0)}{x-0}=\frac{|x|^{r} \sin (1 / x)}{x}
$$

and hence

$$
\left|\frac{f(x)-f(0)}{x-0}\right|=|x|^{r-1}|\sin (1 / x)| \leq|x|^{r-1} .
$$

- If $r>1$, then $\lim _{x \rightarrow 0}|x|^{r-1}=0$, and it follows from the squeeze theorem that

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=0 .
$$

- If $0<r \leq 1$, consider two positive sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ defined by

$$
x_{n}=\frac{1}{2 n \pi} \quad \text { and } \quad y_{n}=\frac{1}{2 n \pi+\pi / 2} .
$$

Clearly, $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=0$. However,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\lim _{n \rightarrow \infty} 0=0, \\
& \lim _{n \rightarrow \infty} \frac{f\left(y_{n}\right)-f(0)}{y_{n}-0}=\lim _{n \rightarrow \infty}\left(2 n \pi+\frac{\pi}{2}\right)^{1-r}= \begin{cases}\infty & \text { if } 0<r<1 \\
1 & \text { if } r=1 .\end{cases}
\end{aligned}
$$

By sequential criterion, $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$ does not exist.
In conclusion, $f^{\prime}(0)$ exists if and only if $r>1$.
6.1-15 Given that the restriction of the cosine function \cos to $I:=[0, \pi]$ is strictly decreasing and that $\cos 0=1, \cos \pi=1$, let $J:=[-1,1]$, and let $\operatorname{Arccos}: J \rightarrow \mathbb{R}$ be the function inverse to the restriction of cos to I. Show that Arccos is differentiable on $(-1,1)$ and $D \operatorname{Arccos} y=$ $(-1) /\left(1-y^{2}\right)^{1 / 2}$ for $y \in(-1,1)$. Show that Arccos is not differentiable at -1 and 1 .

Solution. Since Arccos is the function inverse to the restriction of cos to I, we have if $x \in[0, \pi]$ and $y \in[-1,1]$, then

$$
y=\cos x \quad \text { if and only if } \quad \operatorname{Arccos} y=x .
$$

It was asserted (without proof) in Example 6.1.7(d) that cos is differentiable on I and that $D \cos x=-\sin x$ for $x \in I$. Since $\sin x \neq 0$ for $x \in(0, \pi)$, it follows from Theorem 6.1.8 that

Arccos is differentiable on $(-1,1)$ and

$$
\begin{aligned}
D \operatorname{Arccos} y & =\frac{1}{D \cos x}=\frac{1}{-\sin x} \\
& =\frac{1}{-\sqrt{1-(\cos x)^{2}}}=\frac{-1}{\sqrt{1-y^{2}}}
\end{aligned}
$$

for all $y \in(-1,1)$. Arccos is not differentiable at -1 and 1 since $D \cos$ is zero at $x=0, \pi$ and $\cos 0=1, \cos \pi=-1$.
6.2-7 Use the Mean Value Theorem to prove that $(x-1) / x<\ln x<x-1$ for $x>1$.

Solution. Fix $x>1$ and define $f:[1, x] \rightarrow \mathbb{R}$ by $f(t):=\ln t$. Since f is continuous on $[1, x]$ and differentiable on $(1, x)$, the Mean Value Theorem implies that there is $c \in(1, x)$ such that

$$
f(x)-f(1)=f^{\prime}(c)(x-1) .
$$

Since $f^{\prime}(t)=1 / t$ for $t \in(1, x)$ and $1<c<x$, we have

$$
1 / x<f^{\prime}(c)=1 / c<1
$$

Noting that $f(1)=0$ and $x-1>0$, we have

$$
(x-1) / x<\ln x<x-1 .
$$

