MATH2060AB Homework 8 Reference Solutions

8.1.21. Let $\epsilon>0$. Since $\left(f_{n}\right),\left(g_{n}\right)$ converge uniformly on A to f, g, respectively, there exist $K_{1}, K_{2}>0$ such that the following holds. If $n>K_{1}$ and $x \in A$, then $\left|f_{n}(x)-f(x)\right|<\epsilon / 2$. If $n>K_{2}$ and $x \in A$, then $\left|g_{n}(x)-g(x)\right|<\epsilon / 2$. Let $K=\max \left\{K_{1}\right.$, $\left.K_{2}\right\}$, then for $n>K$ and $x \in A$, it holds that

$$
\left|\left(f_{n}+g_{n}\right)(x)-(f+g)(x)\right| \leq\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right|<\epsilon
$$

Hence, $\left(f_{n}+g_{n}\right)$ converges uniformly on A to $f+g$.
8.1.22. Let $\epsilon>0$. Choose $N:=[1 / \epsilon]+1$. Then for $n>N$ and $x \in \mathbb{R}$, we have $\left|f_{n}(x)-f(x)\right|=1 / n<\epsilon$. Hence, f_{n} converges uniformly on \mathbb{R} to f.
A direct calculation shows that $\left|f_{n}^{2}(x)-f^{2}(x)\right|=\left|\frac{2 x}{n}+\frac{1}{n^{2}}\right|$. Let $\epsilon_{0}=1$, then for any $k \in \mathbb{N}$, let $n_{k}=k$ and $x_{k}=k$, then

$$
\left|f_{n_{k}}^{2}\left(x_{k}\right)-f^{2}\left(x_{k}\right)\right|=\left|\frac{2 x_{k}}{n_{k}}+\frac{1}{n_{k}^{2}}\right|=2+\frac{1}{k^{2}}>1=\epsilon_{0} .
$$

Thus, $\left(f_{n}^{2}\right)$ does not converge uniformly on \mathbb{R}.
8.2.2. One can see that for each $n \in \mathbb{N}, f_{n}$ is continuous on $[0,1]$ and $f_{n} \rightarrow f \equiv 0$ on $[0,1]$, where the limit function f is also continuous on $[0,1]$. We prove that the convergence is not uniform. In fact, let $\epsilon_{0}=1$. For $k \in \mathbb{N}$, let $n_{k}=2 k$ and $x_{k}=\frac{1}{2 k} \in[0,1]$, then $0<x_{k} \leq \frac{1}{n_{k}}$ so that

$$
\left|f_{n_{k}}\left(x_{k}\right)-f\left(x_{k}\right)\right|=\left|n_{k}^{2} x_{k}-0\right|=2 k>1=\epsilon_{0}, \quad \forall k \in \mathbb{N} .
$$

Hence, the convergence is not uniform.
8.2.5. Let $\epsilon>0$. Since $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on \mathbb{R}, there exists $\delta>0$ such that if $x, y \in \mathbb{R}$ and $\left|x_{1}-x_{2}\right|<\delta$, then it holds that $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon$. We let $N=[1 / \delta]+1$. Then for any $n>N$ and $x \in \mathbb{R}$, one has $|(x+1 / n)-x| \leq \delta$, which yields

$$
\left|f_{n}(x)-f(x)\right|=\left|f\left(x+\frac{1}{n}\right)-f(x)\right|<\epsilon
$$

Hence, $\left(f_{n}\right)$ converges uniformly on \mathbb{R} to f.
8.2.7. For each $n \in \mathbb{N}$, the fact that f_{n} is bounded implies that there exists $M_{n}>0$ such that $\sup _{x \in A}\left|f_{n}(x)\right| \leq M_{n}$. By the uniform convergence, there exists $K \in \mathbb{N}$ such that for $n \geq K$ and $x \in A$, it holds that $\left|f_{n}(x)-f(x)\right|<1$. It then follows that $|f(x)| \leq\left|f(x)-f_{K}(x)\right|+\left|f_{K}(x)\right| \leq 1+\left|f_{K}(x)\right| \leq 1+M_{K}<\infty$, for all $x \in A$. Hence, f is bounded on A.
8.2.13. Let $f_{n}(x)=\frac{\sin n x}{n x}$ if $x \neq 0$ and 1 otherwise, then for each $n \in \mathbb{N}, f_{n}$ is continuous on \mathbb{R} and hence $\int_{a}^{\pi}(\sin n x) /(n x) d x=$ $\int_{a}^{\pi} f_{n}(x) d x$ exists. It is also direct to see that $f_{n} \rightarrow f$ on \mathbb{R} with $f(x)=0$ if $x \neq 0$ and 1 otherwise. Thus f is integrable in the interval with ending points a and π and $\int_{a}^{\pi} f=0$. Note that f_{n} is uniformly bounded on any finite interval $[-A, A]$ with $A>0$. In fact,

$$
\left\|f_{n}\right\|_{[-A, A]}=\sup _{|x| \leq A}\left|f_{n}(x)\right|=\sup _{0<|x| \leq A}\left|f_{n}(x)\right|=\sup _{0<|x| \leq A}\left|\frac{\sin n x}{n x}\right| \leq \max \left\{\sup _{0<|y| \leq A}\left|\frac{\sin y}{y}\right|, \frac{1}{A}\right\}<\infty
$$

for all $n \in \mathbb{N}$. Then, Bounded Convergence Theorem implies that $\lim _{n \rightarrow \infty} \int_{a}^{\pi} f_{n}=\int_{a}^{\pi} f=0$ for any $a \in \mathbb{R}$.
8.2.16. (a) For each $n \in \mathbb{N}, f_{n}=0$ on $[0,1]$ except for a finite number of points r_{1}, \ldots, r_{n} in $[0,1]$. Since $0 \in \mathcal{R}[0,1]$, it holds that $f_{n} \in \mathcal{R}[0,1]$. (b) It suffices to show $f_{n} \leq f_{n+1}$ on $[0,1]$ for each $n \in \mathbb{N}$. In fact, if $x \in\left\{r_{1}, \ldots, r_{n}\right\}$ then $f_{n}(x)=1=f_{n+1}(x)$; if $x=r_{n+1}$ then $f_{n}(x)=0<1=f_{n+1}(x)$; otherwise, for any $x \in[0,1]-\left\{r_{1}, \ldots, r_{n+1}\right\}, f_{n}(x)=0=f_{n+1}(x)$. (c) Since f_{n} is bounded on $[0,1]$, Monotone Convergence Theorem implies that the sequence $\left(f_{n}(x)\right)$ is convergent for each $x \in[0,1]$ and we set $f:=\lim f_{n}$ on $[0,1]$. If $x \in[0,1]$ is irrational then $f_{n}(x)=0$ for all $n \in \mathbb{N}$ and hence $f_{n}(x) \rightarrow 0$; if $x \in[0,1]$ is rational then there is $n_{0} \in \mathbb{N}$ such that $x=r_{n_{0}}$ and hence, for $n \geq n_{0}, f_{n}(x)=f_{n}\left(r_{n_{0}}\right)=1$, then $f_{n}(x) \rightarrow 1$. Combining both cases, the limit function f satisfies that $f(x)=0$ if $x \in[0,1]$ is irrational and $f(x)=1$ if $x \in[0,1]$ is rational. Therefore, f is the Dirichlet function, which is not Riemann integrable on $[0,1]$.

