Pf of Thm 9.4.10: Since [a,b] < (-R,R), I or << 1 such that - CR< a and b< CR. (Note: C depends only on 9,6) Therefore YXE[a,b], IXI<CR. By argument in the proof of Cauchy-Hadamard Thur, we have EKEIN S.t. Ianx" | ≤ C", YN≥K (Ex! une orcisc sit.) to find a K indep. of X Since ZCN is convergent, Weierstrass M-Test (Thm 9.4.6) $\Rightarrow \left(\sum_{n=k}^{\infty} a_n x^n \text{ and } fience\right) \sum_{n=0}^{\infty} a_n x^n \text{ conveyes uniformly on } [a,b].$ Thm 9.4.11 · The limit of power series is <u>continuous</u> on the interval of convergence. · A power series can be integrated term-by-term over any closed and bounded interval contained in the aterval of convegence.

 $Pf: \bullet \forall X \in (-R, R), \text{ choose a closed & bounded interval tables}$ s.t. $X \in Ta, b \in (-R, R)$. Then on $Ta, b \in (-R, R)$. Then on $Ta, b \in (-R, R)$. (Thus, P, 4.10) $Za_{n}X^{n}$ converges uniformly. (Thus, 9, 4.10)

Thun 9.4.2
$$\Rightarrow \sum_{n=1}^{\infty} \hat{a}_n X^n$$
 is cartinuous an $[a, b]$ and there at x
Suice $x \in (-R, R)$ is arbitrary, $\sum_{n=0}^{\infty} \hat{a}_n x^n$ is cartinuous on $(-R, R)$.
• For any closed and bounded interval $[a, b] \subset (-R, R)$,
 $\sum_{n=1}^{\infty} a_n x^n$ converges uniformly on $[a, b]$
and hence $Thun 9.4.3 \Rightarrow$ integrability and
 $\int_{a}^{\infty} \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \int_{a}^{b} a_n x^n$.

Thun 9.4.12 (Differentiation Thin)
A power series can be differentiated term-by-term within the
interval of convergence. In fact, if
$$R = radius of convergence of $\Sigma a_n x^n$
and $f(x) = \sum_{n=0}^{\infty} a_n x^n$, for $|X| < R$,
then the radius of convergence of $\sum_{n=0}^{\infty} nan x^{n-1} = R$,
and $f'(x) = \sum_{n=1}^{\infty} nan x^{n-1}$, for $|X| < R$$$

Pf: All conditions of Thur 8.2,3 on interchanging of limit and derivative are clearly satisfied when restricted to a closed and bounded interval [9,6] <->
(using Thm9.4.10)

except the uniform convergence of the
$$Z(anx^n)' = Z nanx^{n-1}$$

on [a,b] needs a proof.
By Thm 9.4.10, we only need to prove the following
Radius of convergence of $Z nanx^{n-1} = R$
= Radius of convergence of $Zanx^n$
Pf

Since
$$n^{\frac{1}{n}} \rightarrow 1$$
, the seq. $(|(n+i)a_{n+i}|^{\frac{1}{n}})$ is bounded
 \iff the seq. $(|a_n|^{\frac{1}{n}})$ is bounded

 $\frac{\text{unbounded case}}{R=0} \iff \text{Radius of convergence of } Z \text{nan} x^{n-1} = 0$

 $\frac{\text{bounded case}}{\text{Radius of convergence of } \sum \text{nan} x^{n-1} = \lim \sup |(n+1) a_{n+1}|^{\frac{1}{n+1}} (\text{chack}!)$ $= \lim \sup ||na_{n}|^{\frac{1}{n}} = \lim \sup (n^{\frac{1}{n}} |a_{n}|^{\frac{1}{n}})$ $= \lim \sup |a_{n}|^{\frac{1}{n}} (\operatorname{suice} n^{\frac{1}{n}} \to 1)$ $= \mathbb{R}$

:. The claim and hence the Thm is proved since $[a,b] \subset (-R,R)$ is arbitrary.

Remarks: (1) Differentiation Thm 9.4.12 makes no conclusion for
$$|X| = R$$
:
Qf. $\sum \frac{1}{N^2} x^n$ conveyes for $|X| = 1$ (= R)
but $\left(\sum_{h^2} x^{\eta}\right)' = \sum_{\eta} \frac{1}{N^{-1}} \begin{cases} \text{conveyes at } x = -1 \\ \text{diverges at } x = 1 \end{cases}$.

(ii) Repeated application of Thu 9.4.12
$$\Rightarrow$$

 $\forall k \in \mathbb{N}$, $\left(\sum_{n=0}^{\infty} G_n \chi^n\right)^{(k)} = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n \chi^{n-k}$ ($|\chi| < R$)

$$\frac{Thm 94.13}{If} \left(\frac{Uniqueness Thm}{2} \right)$$
If $\Sigma a_n x^n \\ s \\ \Sigma b_n x^n$ converse to the same function f
on an interval $(-T, T)$, $T > 0$, then
$$a_n = b_n , \quad \forall n \in \mathbb{N}$$
 $(Tn fact \quad a_n = b_n = \frac{1}{n!} f^{(n)}(0))$

$$Pf: By remark (ii) of Thun 9.4.12, \forall k \in [N],$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k} \quad \forall x \in (-r,r),$$

$$\Rightarrow f^{(k)}(0) = \frac{k!}{(k-k)!} a_k \quad (D^{n-k} = 0 \text{ for } n > k)$$

$$\Rightarrow a_k = \frac{1}{k!} f^{(k)}(0) \quad \text{Same for } b_k. \quad \times$$

Taylor Series
Let
$$f$$
 than derivatives of all orders at a point $c\in \mathbb{R}$,
then one can form a power series $\sum_{n=0}^{\infty} \frac{f^{(n)}c^{2}}{n!} (x-c)^{n}$.
Note that $\int 0$ convergence yet (unless $x=c$)
• Even it converges, it may not equal f (Ex.9.4.12)

Def we say that
$$S(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$$

is the Taylor expansion of f at c if $\exists R > 0$ such that
 $\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n$ conveyes to $f(x)$ on $(c-R, C+R)$,
and $\frac{f^{(n)}(c)}{n!}$ are called Taylor coefficients.

(i.e. The remaider Rn(X) in Taylor's Thm -> 0 on (C-R, C+R)) <u>Remark</u>: By Uniqueness Thm 9.4.13, if Taylor expansion exists, if is migue.

Eg 9.4.14
(4)
$$f(x) = \Delta \overline{u}_{x} , x \in \mathbb{R}$$
,
Then $f'(x) = \begin{cases} CD^{k} \Delta \overline{u}_{x} , i \notin n=2k \\ CD^{k} \Delta \infty , i \notin n=2k \end{cases}$.
At C=0, we have $f'(x) = \begin{cases} 0 , x \notin n=2k \\ CD^{k} , i \notin n=2k \end{cases}$.
Furthermae, by Taylor's Thue 6.4.1, the remainder $\mathbb{R}_{n}(x)$ satisfies
 $[\mathbb{R}_{n}(x)] = \frac{\int_{0}^{(M+1)} (D) ||X||^{M+1}}{(n+1)!}$ for some C, between $X = 0$
 $\leq \frac{|X|^{n+1}}{(n+1)!} \rightarrow 0$
 \therefore $\Delta \overline{u}_{x} = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)!} x^{2n+1}$, $\forall x \in \mathbb{R}$
 io the Taylor expansion of $\Delta u_{x} x$ at $x=0$.
Then application of Differentiation. Then 9.4.12, we have
 $Co = \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n)!} x^{2n}$, $\forall x \in \mathbb{R}$
 io the Taylor expansion of $\cos x$ at $x=0$.
Remarks: (i) In this example, we used "Remainder of Taylor's series"
to calculate the radius of consequence, not directly
from definition or $u_{x}i_{y} = \frac{1}{p} = -\frac{u_{x}}{12n+1}$ (when limit evices)

Note that the series only have "even" terms on "odd" terms,

$$a_{2k+1} = 0$$
 or $a_{2k} = 0$. Itence $\frac{|a_n|}{|a_{n+1}|}$ is not well-
defined and hence $\lim \frac{|a_n|}{|a_{n+1}|}$ cannot be used.
To use definition $p = \limsup |a_n|^{\frac{1}{n}}$, we note for erg:
that for sine series: $a_n = \begin{cases} \frac{(-1)^k}{(2k+1)!} & \text{if } n = 2k+1 \\ 0 & \text{if } n = 2k \end{cases}$

$$\therefore \text{ the seq. } |a_n|^{\frac{1}{n}} = \left(\left(\frac{1}{3!}\right)^{\frac{1}{3}}, 0, \left(\frac{1}{5!}\right)^{\frac{1}{5}}, 0, \cdots \right) \text{ doesn't converge},$$
but linsup $|a_n|^{\frac{1}{n}} = \lim_{k \to \infty} \left[\frac{1}{(2k+1)!} \right]^{\frac{1}{2k+1}} = 0 \quad \therefore \quad R = +\infty.$

(ii) But calculation of radius of convergence doesn't prove the Taylor's Series converges to the "original function".

(b)
$$g(x) = e^{x}$$
, $x \in \mathbb{R}$
Then $g^{(n)}(x) = e^{x}$, $\forall x \in \mathbb{R} \implies \widehat{g}^{(n)}(o) = 1$.
By Taylor's Thin 6.4.1, the remainder satisfies
 $|R_{n}(x)| \leq \frac{e^{c}}{(n+1)!} |x|^{n+1}$ for some c between $x \ge 0$.
 $\leq \frac{e^{|x|} |x|^{n+1}}{(n+1)!} \longrightarrow 0$ as $n \gg \infty$.

$$\therefore e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n} , \forall x \in \mathbb{R}$$

is the Taylor expansion of e^{x} at $x=0$.
Turthermore, by $e^{x} = e^{c} e^{x-c} = e^{c} \sum_{n=0}^{\infty} \frac{1}{n!} (x-c)^{n}$,
we see that $e^{x} = \sum_{n=0}^{\infty} \frac{e^{c}}{n!} (x-c)^{n}$ is the
Taylor expansion of e^{x} at $x=c$. x
Remarks: (i) This implies the radius of conveyence = +co (says at c=0).
Of course, are can dealine it from calculating
 $\left(\frac{1}{n!}\right)^{\frac{1}{n}} \to 0$ as $n \to +\infty$.
Since $|a_{n}|^{\frac{1}{n}} = \left(\frac{1}{n!}\right)^{\frac{1}{n}}$ and $limit$ exists,
 $\therefore p = limin |a_{n}|^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n!}\right)^{\frac{1}{n}} = 0 \Rightarrow R = +\infty$.
Cii) The radius of conveyence R can be calculated by

$$\frac{\ln n}{n \ge \infty} \left| \frac{a_n}{a_{n+1}} \right| = \frac{\ln n}{n \ge \infty} \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \frac{\ln n}{n \ge \infty} (n+1) = \infty$$

.

Review

Differentiation Ch6 \$6.1 Derivative (Chain rule, Inverse function) \$6.2 Mean value Thin (Rolle's Thin, 1st derivative test for Extrema) 6.3 L'Hospital's Rules \$6.4 Taylor's Thm (derivative form of remainder, relative extrana, convex function, Newton's method) Ch7 Riemann Integral Riemann integral (partition, tagged partition, Riemann sum, \$F.1 Riemann integrable, boundedness than) Riemann integrable functions (Canday Criterion, 37.2 Squeeze Thm, classes of Riemann atemalble functions, additionly Than) (Midtem up to have) \$7.3 The Fundamental Thin (1st fam Jaf=F(6)-Fa z^{nd} fam $\frac{d}{dx} \int_{a}^{x} f = f(x)$; substitution Thue, Le besque's Integralility (ritarian (pf anited), Integration by Parts Taylor's Thur with notgenal fair remainder)

Root Test, Ratio Test, and their limit nonsim, Jurfagnal Test, Raabe's Test) §9.3 Tests fa Nonabsoluto Convegence (alternations series, Abel's Test, Dirichlet Test)

59.4 Series of Functions (pointwise & Uniform Univergence, anchy Criterian for Uniform convergence, M-Test, Power Series = radices of convergence, uniform anorgence when restrict closed a fold subjustement, containanty, differentiation & antegrootion term-by-term) (End)

Final exam: May & (Wednesday) 3=30-5=30 pm, UGym (5 questions as in Mid-term) covers all material including those in lectures, tutorials, houewalk, & textbook (including all exercises in Textbook no matter it's assigned in homework or not) with emphasies on those material after nid-tenn (ie. §7.3-§9.4). But those noterial before mid-tenu (ie. §6.1-§7.2) may also be tested directly/explicitly or indirectly/implicitly.