Pf (of Thm 9.3.2): Consider poutial sum

$$S_{2N} = \sum_{k=1}^{2n} (-1)^{k+1} z_k = z_1 - z_1 + z_3 - z_4 + \cdots + z_{2n-1} - z_{2n}$$

Then
$$S_{2(n+1)}-S_{2n} = \mathbb{Z}_{2n+1} - \mathbb{Z}_{2n+2} \ge 0$$
, since \mathbb{Z}_{n} is denetating
 \therefore (S_{2n}) is increasing (in n).

$$A|_{SO} \quad z_1 - s_{2n} = z_2 - z_3 + z_4 - z_5 + \dots + z_{2n-2} - z_{2n-1} + z_{2n} > 0$$

$$\int \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

Then $|S_{2n+1} - S| = |Z_{2n+1} + S_{2n} - S|$ $\leq |Z_{2n+1}| + |S_{2n} - S| < \frac{c}{2} + \frac{c}{2} = c$

$$\therefore$$
 $S_{zn+1} \rightarrow S$ as $n \rightarrow \infty$.

Combining with $S_{2n} \rightarrow S$ as $n \rightarrow \infty$, we have $\lim S_n = S$ $\therefore \Sigma (-t)^{n+1} Z_n$ is convergent.

The Dirichlet and Abel Tests

$$\frac{\text{Thun 9.3.3}}{\text{Lot}} \left(\frac{\text{Abel's Lemma}}{\text{yn}} \right)$$

$$\text{Lot} \left((X_n), (y_n) \text{ be sequences in } \mathbb{R}, \text{ and}$$

$$\int_{S_n = 0}^{S_n = 0} \frac{x}{x_{k-1}} y_{k-1} + \sum_{k=1}^{n-1} (y_{k-1} - x_{k+1}) y_{k-1}$$

$$\text{Then for } n > n,$$

$$\int_{k=n+1}^{m} x_k y_k = (x_m y_m - x_{n+1} y_n) + \sum_{k=n+1}^{m-1} (x_k - x_{k+1}) y_{k-1}$$

$$\underline{Pf}: \sum_{k=n+1}^{m} X_{k} Y_{k} = \sum_{k=n+1}^{m} X_{k} (S_{k} - S_{k-1})$$

$$= X_{m} (S_{m} - S_{m-1}) + X_{m-1} (S_{m-1} - S_{m-2}) + \dots + X_{n+1} (S_{n+1} - S_{n})$$

$$= X_{m} S_{m} - (X_{m} - X_{m-1}) S_{m-1} - (X_{m-1} - X_{m-2}) S_{m-2} - \dots$$

$$- (X_{n+2} - X_{n+1}) S_{n+1} - X_{n+1} S_{n}$$

$$= (X_{M}S_{M} - X_{N+1}S_{N}) + \sum_{k=n+1}^{m-1} (X_{k} - X_{k+1})S_{k}$$

Thm 9.3.4 (Dirich let's Test)
If
$$(Xn)$$
 decreasing $\approx \lim Xn = 0$
 $(Sn = \sum_{k=1}^{n} y_k)$ are bounded,
then $\sum Xnyn$ is convergent.

$$\begin{array}{l} \underbrace{\mathcal{F}}: \quad (sn) \ bdd \Rightarrow \ \exists B>0 \ s.t. \ |sn| \leq B \ \forall n\in \mathbb{N} \ . \\ Then \ Abal's \ lamma \ (Thun 9.3.3) \Rightarrow \ fa \ m>n, \\ \left| \sum\limits_{k=n+1}^{m} X_{k} Y_{k} \right| \leq \left| X_{m} s_{m} - X_{n+1} s_{n} \right| + \sum\limits_{k=n+1}^{m-1} \left| X_{k} - X_{k+1} \right| |s_{k} \right| \\ \leq \left(X_{m} + X_{n+1} \right) B + \sum\limits_{k=n+1}^{m-1} \left(X_{k} - X_{k+1} \right) B \\ = B \left[\left(X_{m} + X_{n+1} \right) + \left(X_{n+1} - X_{m} \right) \right] \qquad \left(\sum\limits_{X_{k} - X_{k+1} \geq 0} X_{n} \ danearos \rightarrow 0 \\ X_{k} - X_{k+1} \geq 0, \ a \times n \geq 0 \end{array} \right) \\ = 2 X_{n+1} B \longrightarrow 0 \quad ao \ n \rightarrow \infty \\ \therefore \ \forall E>0, \ \exists K \in \mathbb{N} \ s.t. \ if \ m>n \geq K, \ \left| \sum\limits_{k=n+1}^{m} x_{u} y_{n} \right| < E \\ By \ Cauchy \ (riterian \ (Thun 3.7.4)), \ Z x_{n} y_{n} \ is \ canneareal to the set of th$$

(Multiplying <u>convegent monotone coefficients</u> to a <u>convergent series</u> results in a <u>convergent series</u>.)

Then
$$|COX + \dots + CONX| = \frac{|Sin(n+\frac{1}{2})X - Sin\frac{1}{2}X|}{2|Sin\frac{1}{2}X|} \leq \frac{|}{|Sin\frac{1}{2}X|}, \text{ HNEN}$$

partial sum of f
 $E CONX$

: For a fixed $x \neq zk\pi$, Dirichlet's Test \Rightarrow $\sum_{n=1}^{\infty} a_n conx$ converges, provided $\begin{cases} (a_n) & G decreasing & g \\ lim a_n = 0 \end{cases}$

(b) Suivilarly, from

$$Z(ain \frac{1}{2}X)(ain X + \dots + ain nX) = Coo(\frac{1}{2}X - Coo(n + \frac{1}{2})X, \forall n \in \mathbb{N}$$
we have, for $X \neq 2k\pi$,

$$|ain X + \dots + ain nX| \leq \frac{1}{|ain \frac{1}{2}X|} \quad \forall n \in \mathbb{N}$$
putted sum of $Z ain nX \qquad \square$ bounded indep. of n

$$\Rightarrow \sum_{n=1}^{\infty} an sin nX \quad Converges for X \neq 2k\pi$$

$$Provided \begin{cases} (an) decreasing and \\ lin an = 0 \end{cases}$$

\$9.4 <u>Series of Functions</u>

Def 94.1
If (fn) is a seq. of functions defined on D⊆R (with R-value),
then the sequence of partial sums (Sn) of the
infinity series of functions ∑fn is defined by
Sn(x) = ∑fn(x), ∀x∈D
• If (Sn) converges to a function f on D, then
we say that the infinite series of functions
∑fn converges to f on D.
(usually write
$$f(x) = n = fn(x)$$
, $f = n = fn$, $a f = \Sigma fn$)
• If ∑lfn(x) converges ∀x∈D, then we say that
∑fn is absolutely convergent on D.
• If Sn ⇒ f (uniformly) on D, then we say that
∑fn is uniformly convergent on D.

Using Sn => f (=) Efn converges to funifamly, Thm 8.2.2, Thm 8.2.3 & Thm 8.2.4 unply the following theorems immediately:

$$\frac{Thm 9.4.2}{} \text{ If } fn \frac{cartinuous}{2} \text{ on } D, \text{ HnEIN}$$

$$\frac{1}{2} \text{ Efn converges to f unifamly} \text{ on } D$$

$$Then f is \frac{cartinuous}{2} \text{ on } D$$

$$(Pf = Applying Thm 8.2.2 \text{ to } Sn = 3 \text{ f.})$$

$$\frac{\text{Thm 9.4.3}}{\text{If }} = \frac{f_n \in \text{RTa,bJ}}{S_n}, \text{ fn \in \text{IN}} \qquad (a < b \in \text{IR})$$

$$= \sum_{n=1}^{\infty} c_n verges to f unifamly on [a,b]$$

$$= \text{Then } f \in \text{RTa,bJ} \quad \text{and} \quad S_a^b f = \sum_{n=1}^{\infty} S_a^b f_n$$

$$= \left(S_a^b \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} S_a^b f_n \right)$$

$$= \left(Pf = \text{Applying Thm 8.7.4 to } S_n \Rightarrow f_n \right)$$

$$\frac{\text{Thm 9.4.4 If}}{(4.4 If}, \quad S_n: [a,b] \rightarrow \mathbb{R}, \text{ nelN} \quad (a < b \in \mathbb{R}), \\ \circ \quad S_n' \quad exists \quad on [a,b], \quad \forall n \in \mathbb{N}, \\ \circ \quad \exists x_0 \in [a,b] \text{ s.t. } \exists S_n(x_0) \quad converges, \\ \circ \quad \exists S_n' \quad converges \quad unifamly \quad on [a,b]. \\ \text{Then } \exists f: [a,b] \rightarrow \mathbb{R} \quad such that \\ \langle \circ \quad \Xi S_n \quad converges \quad fo \quad f \quad unifamly \quad on [a,b], \\ \circ \quad S' \quad exiets \quad and \quad S' = \sum_{n=1}^{\infty} S'_n \end{cases}$$

(Pf = Applying Thm & 2.3 to Su with Su conveges unifamly etc.)

Tests for Uniform Couragence

(Pf: Applying (aucly Griterian for Uniform (onvergence (Thm & 1,10)to Sn and observing thatSm(x) - Sn(x) = Sn+1(x) + ... + Sm(x) .)

Power Series

<u>Remarks</u>: Power serves usually starts with n=0 (instead of n=1): $\Sigma a_{w}x'' = a_{0} + a_{1}x + a_{z}x^{2} + \cdots$

•
$$\sum_{n=0}^{\infty} n! x^n$$
 converges only for $x=0$, (Ex!)
(i) $\sum_{n=0}^{\infty} n! x^n$ converges only for $x=0$, (Ex!)
(ii) $\sum_{n=0}^{\infty} x^n$ converges for $|X| < 1$, (geometric series)
(iii) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges $\forall x \in \mathbb{R}$, (exponential function)
Hence there is a need to determine
the set on which $\sum_{n=0}^{\infty} n! x^n$ converges,

In the following, we consider the case that "C=0''. This is no loss of generality as the "translation y = x - C''redues $\Sigma Gn(x-c)^n$ to $\Sigma Gn Y^n$. <u>Recall</u>: (Def 3.4.10 & Thm 3.4.11) Fu (Xn) a bounded seq., <u>limit superior</u> of (Xn):

$$\begin{split} \underset{n}{\underset{n \neq w}{\underset{n \neq w}{n \neq w}{n$$

Remark : No conclusion for |X| = R:

(i)
$$\Sigma X^{n} : p = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = 1$$

$$\Rightarrow R = \frac{1}{p} = 1.$$

$$\begin{cases} X = 1 : \Sigma X^{n} = |1+|+|+|\cdots & id divergent \\ X = -1 : \Sigma X^{n} = -(1+|-|+|-|\cdots & id divergent. \end{cases}$$
(ii) $\Sigma \frac{1}{n} X^{n} : p = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = 1$

$$\begin{cases} X = 1 : \Sigma \frac{1}{n} X^{n} = 1 + \frac{1}{2} + \frac{1}{2} + \cdots & id divergent \\ X = -1 : \Sigma \frac{1}{n} X^{n} = 1 + \frac{1}{2} + \frac{1}{2} + \cdots & id divergent . \end{cases}$$
(iii) $\Sigma \frac{1}{n^{2}} X^{n} : p = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = \lim_{x \to \infty} |a_{x}|^{\frac{1}{n}} = 1 \quad (Ex!)$

$$\Rightarrow R = \frac{1}{p} = 1$$

$$\begin{cases} X = 1 : \Sigma \frac{1}{n} X^{n} = 1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \cdots & id \quad convergent . \end{cases}$$

$$\begin{cases} X = 1 : \Sigma \frac{1}{n} X^{n} = 1 + \frac{1}{2^{1}} + \frac{1}{2^{2}} + \cdots & id \quad convergent . \end{cases}$$

$$\begin{cases} X = -1 : \Sigma \frac{1}{n} X^{n} = 1 + \frac{1}{2^{2}} + \frac{1}{2^{2}} - \cdots & id \quad convergent . \end{cases}$$

Pf of Cauchy-Hadamand Thm:
• R=0 and R=+00 leave as exercises.
Assume 0n converges for x=0.
Consider 0< |X||X|
Therefore
$$\rho(X| = luineqp(|an|^{\frac{1}{n}}|X|) < C$$
.
⇒ 3KG(N such that
if $n \ge K$, then $|an|^{\frac{1}{n}}|x| \le C$.
⇒ 1(an $x^n| \le C^n$, \forall n ≥ K
Since 0n is convergent.
By Comparison Test (Thim3.7.7), ∑lan $x^n|$ is convergent
i.e. ∑an x^n is absolutely convergent.
This proves the 1st part.
If $|X|>R = \frac{1}{p}$, then $\rho = luineqp(ln|^{\frac{1}{n}} > \frac{1}{|X|}$.
⇒ $|an|^{\frac{1}{n}} > \frac{1}{|X|}$ for infinitely many $n \in N$
i.e. $|anx^n| > 1$ for infinitely many $n \in N$
and brance $anx^n \rightarrow 0$ Zan x^n is divergent.

$$\begin{array}{l} \begin{array}{l} \displaystyle \operatorname{Ranarks:}(i) \hline \mathrm{If} & \operatorname{lin} \left[\frac{a_{n}}{a_{n+1}} \right] axists, then radius of consequence = \operatorname{lin} \left[\frac{a_{n}}{a_{n+1}} \right] \\ & (\operatorname{Notes:}:\operatorname{it} is the vectorial of $\left[\frac{a_{n+1}}{a_{n}} \right] \text{ in ratio test.} \quad (Ex9.45) \\ & \cdot \left[\frac{a_{n}}{a_{n+1}} \right] \rightarrow \infty \text{ is included} \end{array} \right) \\ & \text{When axists, it is usually easier to calculate:} \\ & (1) \quad \sum X^{n} : a_{n} = 1, \forall n \cdot \left[\frac{a_{n}}{a_{n+1}} \right] \equiv 1 \rightarrow 1 \text{ as } n \neq \infty \\ & \ddots \quad R = 1 \\ & (b) \quad \sum \frac{1}{m} X^{n} : a_{n} = \frac{1}{n}, \forall n \cdot \left[\frac{a_{n}}{a_{n+1}} \right] = \frac{1}{m} = \frac{n + 1}{n} \rightarrow 1 \text{ as } n \neq \infty \\ & \ddots \quad R = 1 \\ & (c) \quad \sum \frac{1}{n^{2}} x^{n} : a_{n} = \frac{1}{n^{2}}, \forall n \cdot \left[\frac{a_{n}}{a_{n+1}} \right] = \frac{1}{m^{2}} = \frac{(n + 1)^{2}}{n} \rightarrow 1 \text{ as } n \neq \infty \\ & \ddots \quad R = 1 \\ & (i) \quad \text{If are can clusse } 0 < C < 1 \quad \text{independent of } X \in (-R, R), \\ & \text{then one get uniform consegence.} \quad (Ex !) \end{array}$$$

- $\frac{R_{\text{envark}}}{[a,b]} \circ R = +\infty \text{ included, and Reme we need the assumption that} \\ [a,b] is bounded. \\ [a,b] R = 0 is excluded as <math>(-0,0) = \emptyset$.
 - (althought Sanx" always converges for X=0. Note that we only have interval of convergence (-R, R) < domain of convergence, they may not equal.)