$$\frac{\text{Cor9.2.9}}{\text{Or9.2.9}}, \text{ Xn \neq 0}, \forall n = 1, 2, 3, \dots$$

$$a = \lim_{n \Rightarrow in} n\left(1 - \left|\frac{X_{n+1}}{X_n}\right|\right) \text{ axists}$$
Then $1 \Rightarrow \sum X_n$ is absolutely unvergent
$$A = 1 \Rightarrow \sum X_n \text{ is absolutely unvergent}$$

$$a < 1 \Rightarrow \sum X_n \text{ is not absolutely unvergent}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$$

Easy to check:

$$\begin{cases} \bullet \left| \frac{X_{n+1}}{X_n} \right| = \frac{\frac{n+1}{(n+1)^2 + 1}}{\frac{n^2 + 1}{n^2 + 1}} = \frac{n+1}{n} \cdot \frac{n^2 + 1}{(n+1)^2 + 1} \rightarrow 1, \text{ and} \\ \bullet & n \left(1 - \left| \frac{X_{n+1}}{X_n} \right| \right) = n \cdot \left(1 - \frac{n+1}{n} \cdot \frac{n^2 + 1}{(n+1)^2 + 1} \right) \\ = \frac{n^2 + n - 1}{(n+1)^2 + 1} \longrightarrow 1 \quad \text{as } n \rightarrow \infty$$

Both (or 9.2,5 and Cor 9.2.2 cannot be applied. But $\left|\frac{X_{u+1}}{X_{u}}\right| - 1 = \frac{n+1}{n} \frac{n^{2}+1}{(n+1)^{2}+1} - 1 = \frac{(n+1)(n^{2}+1) - n[(n+1)^{2}+1]}{n[(n+1)^{2}+1]}$ $= -\frac{n^{2}+n-1}{n[(n+1)^{2}+1]} = -\frac{1}{n} \cdot \frac{n^{2}+n-1}{n^{2}+n+2} \ge -\frac{1}{n}$ (check.) $\therefore \left|\frac{X_{u+1}}{X_{u}}\right| \ge 1 - \frac{1}{n}$, $\forall n \ge 1$ ($a = 1 \le 1$ $* = 1 \le 1X_{u}$) Reake's Test (Thu 9.2.8) $\Rightarrow \ge X_{u}$ is not absolutely conjugant.

Remarks: (i) "Limiting form" of Raabe's Test (Cor 9.2.9) doesn't apply but Raabe's Test (Thm 9.2.8) applies. (ii) Integral Test on Limit Campaison Test work for their example. (Ex!)

Thm 9.3.2 let,
$$z_n > 0$$
 and decreasing $(z_{n+1} \le z_n) \forall n \in \mathbb{N}$
 $\int_{n \to \infty}^{\infty} z_n = 0$
Then the alternating series $\sum (-1)^{n+1} z_n$ is convergent

$$\frac{egs}{ls} : By Thm 9.3.1, \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}} + \dots \text{ is convergent}$$

$$\left(\text{Note:} \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots \text{ is divergent by integral test} \right)$$

$$eg 9.2.7 (d)$$