§8.4 The Trigonometric. Functions
The 8.4.1 \exists functions $C: \mathbb{R} \rightarrow \mathbb{R}$ and $S: \mathbb{R} \rightarrow \mathbb{R}$ such that
(i) $C^{\prime \prime}(x)=-C(x)$ and $S^{\prime \prime}(x)=-S(x), \quad \forall x \in \mathbb{R}$.
(ii) $\left\{\begin{array}{l}C^{\prime}(0)=1 \\ C^{\prime}(0)=0\end{array}\right.$ and $\quad\left\{\begin{array}{l}S^{\prime}(0)=0 \\ S^{\prime}(0)=1\end{array}\right.$

Pf: Define $C_{n}(x)$ and $S_{n}(x)$ inductively by

$$
\left\{\begin{array} { l }
{ C _ { 1 } (x) = 1 } \\
{ S _ { 1 } (x) = x }
\end{array} \left\{\begin{array}{l}
S_{n}(x)=\int_{0}^{x} C_{n}(t) d t \\
C_{n+1}(x)=1-\int_{0}^{x} S_{n}(t) d t
\end{array}\right.\right.
$$

Then "Induction": $C_{n} \& S_{n}$ are cartoncios, $\forall n$
\Rightarrow integrable on any bounded interval
\therefore All $\mathrm{C}_{n} \& S_{n}$ are well-defüed.
Moreover, by Fundamental Tim 7.3.5,

$$
S_{n}^{\prime}(x)=C_{n}(x) \quad \& \quad C_{n+1}^{\prime}(x)=-S_{n}(x), \quad \forall x \in \mathbb{R}, \forall n
$$

Cain: $\left\{\begin{array}{l}C_{n+1}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n)!} \\ S_{n+1}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}\end{array}\right.$
Pf: (Ex! By w̄duction)

Now let $A>0$.
If $x \in[-A, A]$ and $m>n>2 A, \quad\left(\frac{A}{2 n}, \frac{A}{2 m}<\frac{1}{4}\right)$ (ie. $|x| \leqslant A$)
then

$$
\begin{aligned}
\left|C_{m}(x)-C_{n}(x)\right| & =\left|(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\cdots+(-1)^{m-1} \frac{x^{2(m-1)}}{(2(m-1))!}\right| \\
& \leqslant \frac{A^{2 n}}{(2 n)!}+\cdots+\frac{A^{2 m-2}}{(2 n-2)!} \\
& =\frac{A^{2 n}}{(2 n)!}\left[1+\frac{(2 n)!}{(2(n+1))!} A^{2}+\frac{(2 n)!}{(2(n+2))!} A^{4}+\cdots+\frac{(2 n)!}{(2(m-1))!} A^{2(m-1-n)}\right] \\
& \leqslant \frac{A^{2 n}}{(2 n)!}\left[1+\frac{A^{2}}{(2 n)^{2}}+\frac{A^{4}}{(2 n)^{4}}+\cdots+\frac{A^{2(m-1-n)}}{(2 n)^{2(n-1-n)}}\right] \\
& \leqslant \frac{A^{2 n}}{(2 n)!}\left[1+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{4}+\cdots+\left(\frac{1}{4}\right)^{2(m-1-n)}\right] \\
& <\frac{16}{15} \cdot \frac{A^{2 n}}{(2 n)!}
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \frac{A^{2 n}}{(2 n)!}=0$, Canclly Criterion fou Unifanc Convergence implies C_{n} converges unifamly on $[-A, A], \quad \forall A>0$

And hence, $C_{n}(x)$ conveges $\forall x \in \mathbb{R}$.
Let $C(x)=\lim _{n \rightarrow \infty} C_{n}(x)$.
Then C ch cureges mieformly to C on $[-A, A], \forall A>0$.
Hence Thm8.2.2 \Rightarrow
C is cts on $[-A, A], \forall A>0$
and therefue, C is cts on R.
Moreoven, $C_{n}(0)=1, \forall n \Rightarrow C(0)=1$.
Since $\quad S_{n}(x)=\int_{0}^{x} \tau_{n}(t) d t$

$$
\begin{aligned}
& S_{m}(x)-S_{n}(x)= \\
& \Rightarrow \quad \int_{0}^{x}\left(C_{m}(t)-C_{n}(t)\right) d t \\
& \Rightarrow \quad\left|S_{m}(x)-S_{n}(x)\right| \leqslant \int_{0}^{x}\left|C_{m}(t)-C_{n}(t)\right| d t \quad \text { if } x \geq 0 \\
&\left(\int_{x}^{0}\left|C_{m}(t)-C_{n}(t)\right| d t, \text { if } x<0\right)
\end{aligned}
$$

Then $f_{a} x \in[-A, A]$ \& $m>n>2 A$,

$$
\begin{aligned}
\left|S_{m}(x)-S_{n}(x)\right| & \leqslant \int_{0}^{x} \frac{16}{15} \cdot \frac{A^{2 n}}{(2 n)!} d t \\
& \leqslant \frac{16}{15} \cdot \frac{A^{2 n}}{(2 n)!} \cdot A \quad\left(\text { suixilarly } f_{a} \int_{x}^{0} \cdots\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

\therefore Sn conveges unifanly on $[-A, A], \forall A>0$.
$\Rightarrow \quad S_{n}(x)$ conceges $\forall x \in \mathbb{R}$.
let $S(x)=\lim _{n \rightarrow \infty} S_{n}(x), \quad \forall x \in \mathbb{R}$
Then S_{n} converges unifamly to S on $[-A, A], \forall A>0$.
By Thu $8.2 .2, S$ is cts on \mathbb{R} (cos S_{n} cts on $\mathbb{R}, \forall u$)
Since $S_{n}(0)=0, \forall n$, we have $S(0)=0$.
Now by Fundamental Thy of Calculus,

$$
C_{n}^{\prime}(x)=-S_{n-1}(x) \underset{\text { (wiftan) }}{\rightrightarrows}-S(x) \quad \text { on }[-A, A], \forall A>0
$$

Them 8.2.3 \Rightarrow
$C(x)=\lim _{n \rightarrow \infty} C_{n}(x)$ is differentiable and

$$
C^{\prime}(x)=-S(x) \quad \text { on } E A, A J, \quad \forall A>0
$$

Hence C is differentiable $\forall x \in \mathbb{R}$ and

$$
C^{\prime}(x)=-S(x), \quad \forall x \in \mathbb{R} .
$$

In particular, $C^{\prime}(0)=-S(0)=0$
Sunrilarly. Fundamental Thur

$$
\begin{aligned}
\Rightarrow S_{n}^{\prime}(x) & =C_{n}(x) \Rightarrow C(x) \text { on }[-A, A], \forall A>0 \\
& \vdots(E x!)
\end{aligned}
$$

$\Rightarrow S$ is differentiable $\forall x \in \mathbb{R}$ \&

$$
S^{\prime}(x)=L(x), \quad \forall x \in \mathbb{R}
$$

In particular, $S^{\prime}(0)=C^{\prime}(0)=1$.

Finally, conbinumg the 2 fanmelae of $1^{\text {st }}$ derirations, we hove

$$
\begin{aligned}
& C^{\prime \prime}(x)=-S^{\prime}(x)=-C^{\prime}(x) \\
& S^{\prime \prime}(x)=C^{\prime}(x)=-S^{\prime}(x)
\end{aligned}
$$

Cor8.4.2 If C, S are the functions in Thm 8.4.1, then
(iii) $\left\{\begin{array}{l}C^{\prime}(x)=-S(x), \\ S^{\prime}(x)=C(x)\end{array} \quad \forall x \in \mathbb{R}\right.$.

Macover, $C_{\text {I }} S$ lave denivatives of all orders
$f f=$ Easy
Cor8.43 The fuctions C \& S in Thm8.4.1 satiofy the Pythogorean Idautty: $(C(x))^{2}+(S(x))^{2}=1, \quad \forall x \in \mathbb{R}$

Pf: Let $f(x)=(C(x))^{2}+\left(S^{\prime}(x)\right)^{2}$.
By Thm 8.4.1, f is differentiable \&

$$
\begin{aligned}
f^{\prime}(x) & =2 C^{\prime}(x) C^{\prime}(x)+2 S(x) S^{\prime}(x) \\
& =-2 C^{\prime}(x) S^{\prime}(x)+2 S^{\prime}(x) C^{\prime}(x)=0, \quad \forall x \in \mathbb{R}
\end{aligned}
$$

$\Rightarrow f(x)$ is a constant function on \mathbb{R}.

$$
\Rightarrow f(x) \equiv f(0)=(d(0))^{2}+(5(0))^{2}=1, \quad \forall x \in \mathbb{R}
$$

Thm8.4.4 The functions C and S satisfying

$$
(*)_{C}\left\{\begin{array}{l}
C^{\prime \prime}=-C \\
C^{\prime}(0)=1 \\
C^{\prime}(1)=0
\end{array} \quad \text { and } \quad(*), S \begin{array}{l}
S^{\prime \prime}=-S \\
S(0)=0 \\
S^{\prime}(0)=1
\end{array}\right.
$$

are unique.
Pf: Omitted (similar argument as in the proof for exponential function E by using Taylor's The, but reduce to "two" terms instead of "one" because the equations are $2^{\text {nd }}$ order.)

Def 8.4.5 The unique functions $C \& S$ green in Than 8.4.1 are called the cosine function and the sine function respectionly, and denoted by

$$
\cos x=C(x) \quad \& \quad \sin x=S(x)
$$

Thu 8.4.6: If $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f^{\prime \prime}(x)=-f(x), \forall x \in \mathbb{R}$, then \exists real numbers α, β such that

$$
f(x)=\alpha C(x)+\beta S(x), \quad \forall x \in \mathbb{R} .
$$

$P f:$ Let $\alpha=f(0)$ \& $\beta=f^{\prime}(0)$.
and cusider $h(x)=f(x)-[\alpha C(x)+\beta S(x)], \quad \forall x \in \mathbb{R}$.
Than it is easy to check that (Ex!)

$$
\left\{\begin{array}{l}
h^{\prime \prime}=-h \\
h^{\prime}(0)=0 \\
h^{\prime}(0)=0
\end{array}\right.
$$

Sinilarly argument as in the proof of Thm 8.4.4, we have $\quad h(x) \equiv 0, \forall x \in \mathbb{R}$.

$$
\therefore \quad f(x)=\alpha C(X)+\beta S(x) \quad \forall x \in \mathbb{R}
$$

Thmb.4.7 The casme $C(x)$ \& sume $S(x)$ satisfy
(V) $\quad C(-x)=C(x)$ \& $S(-x)=-S(x) \quad \forall X \in \mathbb{R}$
(vi) $\left\{\begin{array}{l}C(x+y)=C(x) C(y)-S(x) S(y) \\ S(x+y)=S(x) C(y)+C(x) S(y)\end{array} \quad\right.$ (coupound augle)

Pf: Omitted (Easy by Thm 0.4.4 \& 8.4.6)

Thm8.4.8 For $x \geqslant 0$,
(Vii) $-x \leq S(x) \leq x ;$
(V.iii) $1-\frac{1}{2} x^{2} \leqslant C(x) \leqslant 1$;
(ix) $x-\frac{1}{6} x^{3} \leqslant S(x) \leqslant x$;
(x) $1-\frac{1}{2} x^{2} \leqslant C(x) \leqslant 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$
$P f=$ Omitted

Lemma 8.4.9 - \exists a root γ of $C(x)$ in the interval $[\sqrt{2}, \sqrt{3})$.

- Moreover, $C(x)>0 \quad \forall x \in[0, \gamma)$.
- The number 2γ is the smallest positive root of $S(x)$.

Pf: (Ex!)
(using (x) in The 8.4.8, continuity of $C^{\prime}(x) \&$ (vi) in Thu 8.4.7)
Note: Of course, we can prove that $\gamma>\sqrt{2}$ as stated in the Textbook. But we need Ex 8.4.4 (not just Thu 88.8.8).

Def 84,10 $\pi \stackrel{\text { def }}{=} 2 \gamma=$ smallest positive root of S
Note $=$ Thu $8.4 .8(x) \Rightarrow 2.828 \leqslant \pi \leqslant 2 \sqrt[x]{\underbrace{6-2 \sqrt{3}}_{\pi}}<3.185$ (Ex!) smallest proxitive root of $1-\frac{1}{2} 2^{2}+\frac{1}{24} x^{4}$.

Th 8.4.11

- C\&S are 2π-periodic (have period 2π)

$$
(x i) \quad C(x+2 \pi)=C(x) \& S(x+2 \pi)=S(x), \forall x \in \mathbb{R}
$$

- $\left\{\begin{array}{l}S(x)=C\left(\frac{\pi}{2}-x\right)=-C\left(x+\frac{\pi}{2}\right) \quad \forall x \in \mathbb{R} \\ C(x)=S\left(\frac{\pi}{2}-x\right)=S\left(x+\frac{\pi}{2}\right)\end{array} \quad\right.$

Pf Omitted.

