§ 8.4 The Trigonometric Functions
The 84.1 I functions C: R = R and S: R = R such that
(i) C'(x) = -C(x) and S'(x) = -S(x),
$$\forall x \in \mathbb{R}$$
.
(ii) C(0) = 1 and S(0) = 0
(iii) C(0) = 0 and S(x) inductively by
C(0) = 0 Cn(x) and S_n(x) inductively by
C(1x) = 1
S_1(x) = x
S_n(x) = S_0 C_n(x) dt
C_{n+1}(x) = 1 - S_0 S_n(x) dt
(i.e. starting with G1 S_2 S_3 - ... S_n - ...)
Then "Induction": C_n & S_n are cartinuous, $\forall n$
 \Rightarrow integrable on any bounded interval
 \therefore All C_n & S_n are well-defined.
Moreover, by Fundamental Thm 7.35,

 $S'_{n}(x) = C'_{n}(x)$ & $C'_{n+1}(x) = -S'_{n}(x)$, $\forall x \in \mathbb{R}$, $\forall n$

$$\frac{(laui)}{(2n)!}: \begin{cases} C_{n+1}(x) = 1 - \frac{\chi^2}{2!} + \frac{\chi^4}{4!} - \dots + (-1)^n \frac{\chi^{2n}}{(2n)!} \\ S_{n+1}(x) = x - \frac{\chi^3}{3!} + \frac{\chi^5}{5!} - \dots + (-1)^n \frac{\chi^{2n+1}}{(2n+1)!} \\ Pf : (Ex! By induction) \end{cases}$$

Now let
$$A > 0$$
.
If $x \in [A, A]$ and $m > n > 2A$, $\left(\frac{A}{2u}, \frac{A}{2u}, \frac{A}{4}\right)$
(i.e. $w \le A$)
then
 $|C_{m}(x) - C_{n}(x)| = |C_{1}^{n} \frac{x^{2n}}{(2n)!} + \dots + (-U_{(2(n-1))!}^{n-1})|$
 $\leq \frac{A^{2n}}{(2n)!} + \dots + \frac{A^{2n-2}}{(2n-2)!}$
 $= \frac{A^{2n}}{(2n)!} \left[1 + \frac{(2n)!}{(2n+2)!}A^{2} + \frac{(2n)!}{(2(n+2))!}A^{4} + \dots + \frac{(2n)!}{(2(n+2))!}A^{2(n-1-n)}\right]$
 $\leq \frac{A^{2n}}{(2n)!} \left[1 + \frac{A^{2}}{(2u)^{2}} + \frac{A^{4}}{(2n)^{4}} + \dots + \frac{A^{2(n-1-n)}}{(2n)^{2(n-1-n)}}\right]$
 $\leq \frac{A^{2n}}{(2n)!} \left[1 + (\frac{A}{4})^{2} + (\frac{1}{4})^{4} + \dots + (\frac{1}{4})^{2(n-1-n)}\right]$
 $\leq \frac{A^{2n}}{(2n)!} \left[1 + (\frac{A}{4})^{2} + (\frac{1}{4})^{4} + \dots + (\frac{1}{4})^{2(n-1-n)}\right]$
 $\leq \frac{16}{(5} - \frac{A^{2n}}{(2n)!}$
Since $\lim_{n \to \infty} \frac{A^{2n}}{(2n)!} = 0$, Cauchy Criterian for Uniform Consequence
inplies C_{n} converges uniformly on $[-A, A]$, $\forall A > 0$

And hence, CN(X) converges YXER. $C(x) = \lim_{N \to k} C_n(x)$ let Then Ch converges uniformly to C on E-A, AJ, VA>O. Hence Thru 8.2.2 => C is cts on FA, AJ, VA>0 and therefore, C is cts on PR Moreover, $C_n(0) = 1$, $\forall n \implies C'(0) = 1$. Since $S'_n(x) = \int_{-\infty}^{\infty} C_n(t) dt$ $S'_{M}(x) - S'_{n}(x) = S'_{n}(C_{M}(t) - C_{n}(t))dt$ $\Rightarrow |S_{m}(x) - S_{n}(x)| \leq S_{o}^{\times} |C_{m}(t) - C_{n}(t)| dt \quad y \neq x \geq 0$ (cor 7.3.15) $\left(\int_{\infty}^{\infty}\left[c_{m}(t)-c_{n}(t)\right]dt, \chi \times 0\right)$ Then for XET-A, AI & M>N>ZA, $|S_{n}(x) - S_{n}(x)| \leq \int_{0}^{x} \frac{16}{15} - \frac{A^{2n}}{(2n)!} dt$ $\leq \frac{16}{15} \cdot \frac{A^{2N}}{(2N)!} \cdot A \quad (Similarly for \int_{x}^{0} \cdots)$ $\rightarrow 0 \quad \text{as } N \rightarrow \infty$ - Sn converges uniformly on [-A, A], VA>0. ⇒ S_(X) Converges VXER.

let
$$S(x) = \lim_{n \to \infty} S_n(x)$$
, $\forall x \in \mathbb{R}$
Then S_n converges winfamly to S on $(-A, A]$, $\forall A > 0$.
By Thur 8.2.2, S is at an $(A = S_n \ et a_n \ R, \forall a_n)$
Strice $S_n(0) = 0, \forall n$, we have $S(0) = 0$.
Now by Fundamental Then of Calculus,
 $C'_n(x) = -S_{n-1}(x) \Rightarrow -S(x)$ on $(-A, A], \forall A > 0$
 $(winform)$
Thus 8.2.3 \Rightarrow
 $C(x) = \lim_{n \to \infty} C_n(x)$ is differentiable and
 $C'(x) = -S(x)$ on $(-A, A], \forall A > 0$
Hence C is differentiable $\forall x \in \mathbb{R}$ and
 $C'(x) = -S(x), \forall x \in \mathbb{R}$.
In potentialar, $C'(0) = -S(0) = 0$
Similarly, Fundamental Then
 $\Rightarrow S'_n(x) = C_n(x) \Rightarrow C(x)$ on $(-A, A], \forall A > 0$
 $\vdots (Ex!)$
 $\Rightarrow S$ is differentiable $\forall x \in \mathbb{R}$ and
 $S(x) = C(x), \forall x \in \mathbb{R}$.
In porticular, $S'(0) = C(0) = 1$.

Finally, combining the Z formulae of 1st derivatives, we have

$$C''(x) = -S'(x) = -C(x)$$
 a
 $S''(x) = C'(x) = -S(x)$.

Cor8.4.2 If C, S are the functions in Thm 8.4.1, then
(iii)
$$\begin{cases} C'(x) = -S(x), \\ S(x) = C(x) \end{cases}$$
 $\forall x \in \mathbb{R}$.
Moreover, C x S have derivatives of all orders

Cor8.43 The functions
$$C \ge S$$
 in Thm 8.4.1 satisfy
the Pythagorean Identity: $(C(x_s)^2 + (S(x_s)^2) = 1$, $\forall x \in \mathbb{R}$

 $\begin{array}{l} \underbrace{\mathrm{H}} : & \underbrace{\mathrm{L}} + f(x) = \left(\underbrace{\mathrm{C}(x)}\right)^2 + \left(\underbrace{\mathrm{S}(x)}\right)^2 \\ & \underbrace{\mathrm{By}} \ Thm \& 4.1, & f & \underbrace{\mathrm{b}} \ dt \underbrace{\mathrm{fec}} a t t a b \Big] e & \underbrace{\mathrm{F}} \\ & \underbrace{\mathrm{F}(x)} = 2 \operatorname{C}(x) \operatorname{C}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{C}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{C}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) \operatorname{S}(x) + 2 \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) + 2 \operatorname{S}(x) \operatorname{S}(x) = 0 \\ & = - 2 \operatorname{S}(x) +$

PE: Omitted (similar argument as in the proof for exponential function E by using Taylor's Thm, but reduce to "two" terms instead of "one" because the equations are 2nd order.)

Def. 8.4.5 The unique functions
$$C \ge S'$$
 given in Thm 8.4.1
are called the cosine function and the sine function respectively,
and denoted by
 $Cop \chi = C(\chi) \ge \chi in \chi = S(\chi)$

Thm 2.4.6: If
$$f:\mathbb{R} > \mathbb{R}$$
 satisfies $f'(x) = -f(x)$, $\forall x \in \mathbb{R}$,
then \exists real numbers d, β such that
 $f(x) = d c(x) + \beta s'(x)$, $\forall x \in \mathbb{R}$.

$$Pf: Let \ x = f(0) \ x \ \beta = f(0).$$

$$and \ ausider \ h(x) = f(x) - [x c(x) + \beta s(x)], \ \forall x \in \mathbb{R}.$$

$$Then it is easy to check that (Ex!)$$

$$f'' = -f_{1}$$

$$f_{1}(0) = 0$$
Similarly argument as in the proof of Thm 8.4.4,
we have $f_{1}(x) = 0$, $\forall x \in \mathbb{R}$.

$$f_{2}(x) = d_{1}(x) + p_{2}(x) \quad \forall x \in \mathbb{R}.$$

$$\frac{\text{Thm \& 4.7}}{(v)} \text{ The cosine } C(x) \ge sine \\ S(x) \le satisfy$$

$$(v) \quad C'(-x) = C'(x) \ge S(-x) = -S(x) \quad \forall x \in \mathbb{R}$$

$$(v'_{1}) \quad C'(x+y) = C'(x) \quad C'(y) - S'(x) \quad S'(y) \quad (coupoind \\ augle) \quad S'(x+y) = S(x) \quad C'(y) + C'(x) \quad S'(y) \quad (coupoind \\ augle) \quad formulae$$

Pf: Omitled (Easy by Thm 8.4.4 2.8.4.6)

$$\frac{\text{Thm \& 4.\$}}{(\text{Vii})} = For \quad x \ge 0,$$

$$(\text{Vii}) = -x \le S(x) \le X;$$

$$(\text{Viii}) = -\frac{1}{2}x^{2} \le C(x) \le 1;$$

$$(ix) = X - \frac{1}{6}x^{3} \le S(x) \le X;$$

$$(x) = 1 - \frac{1}{2}x^{2} \le C(x) \le 1 - \frac{1}{2}x^{2} + \frac{1}{24}x^{4}$$

Pf = Omitted

Lamma 24.5 • I a root x of C(x) in the interval [JZ, JZ).
• Macaner, C(x)>0 & x (0, x).
• The number 28 is the smallest positive root of S(x).
Pf: (Ex!)
(Wing (X) in The 2.4.8, continuity of C(x) & (V) in The 8.4.7)
Note: Of course, we can prove that
$$X > JZ$$
 as stated in
the Textbook. But we need $Ex.8.4.4$ (not just The 8.4.8).
Def 84.10 TT $def zx =$ smallest positive root of S
Note: The 8.4.8 (x) $\Rightarrow 2.828 < TT < 2.5 (6-2.12) < 3.185 (Ex!)$
smallest positive root of $1-\frac{1}{2}x^2 + \frac{1}{2}x^4$.
Thm 8.4.11
• C & S are $2TT - pariodic$ (there period $2TT$)
(Xi) C(X+2T) = C(X) & S(X+2T) = S(x), $\forall x \in \mathbb{R}$
• $\int S(x) = C(T - x) = -C(X + T - x) = S(x)$, $\forall x \in \mathbb{R}$

Pf Omitted.