The Logarithm Function

Note: By diffuiction $\begin{cases}
(L \circ E)(x) = x, \forall x \in \mathbb{R} \quad (E: \mathbb{R} \Rightarrow \{y>0\} = E(\mathbb{R})) \\
(E \circ L)(y) = y, \forall y>0
\end{cases}$ i.e. $\ln e^{x} = x, e^{\ln y} = y$

 $(a \log e^{x} = x) e^{\log y} = y$

Thm 83.9 • The logarithm L= 1x>05 ~ R is a strictly increasing
function with domain
$$1 \times R: \times > 05$$
 and $L(1\times>05) = R$.
• $L'(x) = \frac{1}{x}, \forall x > 0$ (vii)
• $L(xy) = L(x) + L(y), \forall x > 0, y > 0$ (viii)
• $L(1) = 0 = L(e) = 1$ (ix)
• $L(x^{+}) = rL(x), \forall x > 0$ and reO . (x)
• $L(x^{+}) = rL(x), \forall x > 0$ and reO . (x)
• $L(x^{+}) = rL(x), \forall x > 0$ and reO . (xi)
Pf: All are easy from the definition & proputies of $E(x)$. (Ex!)
Note that in property (x), $L(x^{+}) = rL(x)$ actually works
for irrational number $\alpha = L(x^{\alpha}) = \alpha L(x)$.
Although we used it a lot, X^{α} is not yet defined
in the Textbook for $\alpha \notin O$.

Power Functions

$$\begin{array}{r} \underline{\text{Power Functions}} \\
\hline \underline{\text{Pefd.3.10}} \quad \text{If } \alpha \in \mathbb{R} \quad \text{and} \quad x > 0 \ , \ \text{then} \\
& \quad x^{\alpha} \quad \underline{\text{def}} \quad e^{\alpha \ln x} = E(\alpha L(x)) = e^{\alpha \log x} \\
\hline \text{The function} \quad x \mapsto x^{\alpha} \quad \text{fax} > 0 \quad \text{is called the} \\
& \quad \underline{\text{power function with exponent } \alpha}.
\end{array}$$

Note: If
$$d = r \in \mathbb{Q}$$
, then faxoo
 $E(dL(x)) = E(rL(x)) = E(L(x^{r}))$ (by property (x))
 $= x^{r}$

.: Def 8.3.10 is consistent with previous definition for rEQ.

Thm 8.3.11 If
$$d \in [R, x, y \in (0, \infty)]$$
, then
(a) $\int^{\alpha} = 1$,
(b) $x^{\alpha} > 0$,
(c) $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$,
(d) $\left(\frac{x}{y}\right)^{\alpha} = \frac{x^{\alpha}}{y^{\alpha}}$

Thm 8.3.12 If
$$\alpha, \beta \in \mathbb{R}$$
, $x \in (0,\infty)$, then
(a) $x^{\alpha+\beta} = x^{\alpha} x^{\beta}$
(b) $(x^{\alpha})^{\beta} = x^{\alpha\beta} = (x^{\beta})^{\alpha}$
(c) $x^{-\alpha} = \frac{1}{x^{\alpha}}$,
(d) If $\alpha < \beta$, then $x^{\alpha} < x^{\beta}$ for $x > 1$