The Logaritum Function
Def 83.8 The inverse function of E is called the logarithm (or the natural logarithm).

Notation: In the Textbook, begarittam is denoted by "L.".
Other common notations are "ln" or "log".

$$
\binom{\text { mae common in graduate textbook }}{\text { of research antilles in mathematics }}
$$

Note: By defaiction

$$
\left\{\begin{array}{l}
(L \circ E)(x)=x, \forall x \in \mathbb{R} \quad(E: \mathbb{R} \rightarrow\{y>0\}=E(\mathbb{R})) \\
(E \circ L)(y)=y, \forall y>0
\end{array}\right.
$$

ie. $\quad \ln e^{x}=x, \quad e^{\ln y}=y$
(a $\log e^{x}=x, e^{\log y}=y$)

Thm8.3.9 The logarithm $L:\{x>0\} \rightarrow \mathbb{R}$ is a strictly increasing function with domain. $\{x \in \mathbb{R}: x>0\}$ and $L(\{x>0\})=\mathbb{R}$.
e $L^{\prime}(x)=\frac{1}{x}, \forall x>0$

- $L(x y)=L(x)+L(y), \forall x>0, y>0$
- $L(1)=0$ \& $L(e)=1$
- $L\left(x^{r}\right)=r L(x), \quad \forall x>0$ and $r \in \mathbb{B} \quad(x)$
- $\lim _{x \rightarrow 0^{+}} L(x)=-\infty \quad \& \lim _{x \rightarrow+\infty} L(x)=+\infty$

Pf: All are easy from the defaition \& proputies of $E(x)$. (Ex!) [Note that in property $(x), L\left(x^{r}\right)=r L(x)$ actually warts '] fa irrational number $\alpha=L\left(x^{\alpha}\right)=\alpha L(x)$.

Although we used it a lot, x^{α} is not yet defined in the Textbook fer $\alpha \notin \mathbb{Q}$.

Power Functions
Def8.3.10 If $\alpha \in \mathbb{R}$ and $x>0$, then

$$
x^{\alpha} \stackrel{\operatorname{def}}{=} e^{\alpha \ln x}=E(\alpha L(x))=e^{\alpha \log x}
$$

The function $x \mapsto x^{\alpha} \quad f_{a} x>0$ is called the power function with exponent α.

Note: If $\alpha=r \in \mathbb{Q}$, then fax>0

$$
\begin{aligned}
E(\alpha L(x)) & =E(r L(x))=E\left(L\left(x^{r}\right)\right) \quad(\text { by propurty }(x)) \\
& =X^{r}
\end{aligned}
$$

\therefore Def8.3.10 is consisteut with previons defficition far $r \in \mathbb{Q}$.

Thm8.3.II If $\alpha \in \mathbb{R}, x, y \in(0, \infty)$, then
(a) $\int^{\alpha}=1$,
(b) $x^{\alpha}>0$,
(c) $(x y)^{\alpha}=x^{\alpha} y^{\alpha}$,
(d) $\left(\frac{x}{y}\right)^{\alpha}=\frac{x^{\alpha}}{y^{\alpha}}$
$P f:($ Easy Ex!)

Thm8.3.12 If $\alpha, \beta \in \mathbb{R}, x \in(0, \infty)$, then
(a) $x^{\alpha+\beta}=x^{\alpha} x \beta$,
(b) $\left(x^{\alpha}\right)^{\beta}=x^{\alpha \beta}=\left(x^{\beta}\right)^{\alpha}$,
(C) $x^{-\alpha}=\frac{1}{x^{\alpha}}$,
(d) If $\alpha<\beta$, then $x^{\alpha}<x^{\beta}$ fa $x>1$
$P f:($ Easy Ex!)

Thm8.3.13 Fo $\alpha \in \mathbb{R}$,
$x \mapsto x^{\alpha}$ is contunons and differentiable on $(0, \infty)$, and

$$
D x^{\alpha}=\alpha x^{\alpha-1}
$$

Pf: Chain rule $\Rightarrow x^{\alpha}$ is differentiable \& hence cuntùucres and $\quad D x^{\alpha}=D(E(\alpha L(x)))=E^{\prime}(\alpha L(x)) D(\alpha L(x))$

$$
\begin{aligned}
& =E(\alpha L(x)) \cdot \alpha D(L(x)) \\
& =\alpha x^{\alpha} \cdot \frac{1}{x} \\
& =\alpha x^{\alpha-1} \cdot \not x
\end{aligned}
$$

The Function $\log _{a}$ (logarithm of x to the base a)

Def 8.3.14 Let $a>0$ and $a \neq 1$.

$$
\log _{a}(x) \stackrel{\operatorname{dof}}{=} \frac{\ln x}{\ln a}=\frac{\log x}{\log a} \quad \text { fa } x>0
$$

