Cor 7.2.10 If $f \in R[a, b] \&[c, d] \subset[a, b]$, then $f \in R[c, d]$.
$P f=$ By Additivity Thu 7.2.9

$$
f \in R[a, b] \Rightarrow f \in R[c, b] \Rightarrow f \in R[c, d]
$$

Cor 7.2.11 If $f \in R[a, b]$ \& $a=c_{0}<c_{1}<\cdots<c_{m}=b$, then $\left.f\right|_{\left[c_{i-1}, c_{i}\right]} \in \operatorname{R}\left[c_{i-1}, c_{i}\right]$ and

$$
\int_{a}^{b} f=\sum_{i=1}^{n} \int_{c_{i-1}}^{c_{i}} f
$$

(Pf: By Induction)
Def: If $f \in R[a, b]$ and $\alpha, \beta \in[a, b]$ with $\alpha<\beta$, we define $\int_{\beta}^{\alpha} f \stackrel{\text { def }}{=}-\int_{\alpha}^{\beta} f$ and

$$
\int_{\alpha}^{\alpha} f \stackrel{d f}{=} 0
$$

The 7.2.13 If $f \in R[a, b]$ and $\alpha, \beta, \gamma \in[a, b]$, then

$$
\begin{equation*}
\int_{\alpha}^{\beta} f=\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f \tag{*}
\end{equation*}
$$ in the sense that the existence of any two of these integrals implies the third integral exists \& (*) holds

Pf: Clearly Thm 7.2.9 \& Cor 7.2 .11 applies the statement that "the existence of any two of these integrals
\Rightarrow the third integral exists".
Now if any two of α, β, γ equal,
then (*) is trivially holds (check)
If α, β, γ are distinct, we consider

$$
\begin{aligned}
L(\alpha, \beta, \gamma) & \stackrel{d e f}{=} \int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f+\int_{\gamma}^{\alpha} f \\
& =\int_{\alpha}^{\beta} f-\int_{\gamma}^{\beta} f-\int_{\alpha}^{\gamma} f
\end{aligned}
$$

Clearly $L(\alpha, \beta, \gamma)=L(\beta, \gamma, \alpha)=L(\gamma, \alpha, \beta)$

$$
=-L(\alpha, \gamma, \beta)=-L(\gamma, \beta, \alpha)=-L(\beta, \alpha, \gamma)
$$

(eg: $L(\alpha, \beta, \gamma)=\int_{\alpha}^{\beta} f+\int_{\beta}^{\gamma} f+\int_{\gamma}^{\alpha} f$

$$
\left.=-\int_{\beta}^{\alpha} f-\int_{\gamma}^{\beta} f-\int_{\alpha}^{\gamma} f=-L(\alpha, \gamma, \beta)\right)
$$

By Additivity Thu 7.2.9, if $\alpha<r<\beta$, then $L(\alpha, \beta, \gamma)=\int_{\alpha}^{\beta} f-\left(\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f\right)=0$.

By the above, we have $L(\alpha, \beta, \gamma)=0$
fa all other situations: $\gamma<\beta<\alpha, \beta<\alpha<\gamma$

$$
\gamma<\alpha<\beta, \alpha<\beta<\gamma, \& \beta<\gamma<\alpha \text {. }
$$

Heme $\forall \alpha, \beta, \gamma$,

$$
0=L(\alpha, \beta, \gamma)=\int_{\alpha}^{\beta} f-\left(\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f\right)
$$

ie. $\quad \int_{\alpha}^{\beta} f=\int_{\alpha}^{\gamma} f+\int_{\gamma}^{\beta} f$

S7.3 The Fundamental Theorem
Recall: A function $F:[a, b] \rightarrow \mathbb{R}$ is called an antiderivative a a primitive of $f:[a, b] \rightarrow \mathbb{R}$ on $[a, b]$ if

$$
F^{\prime}(x)=f(x), \forall x \in[a, b]
$$

(One sided derivatives at $x=a<x=b$)

Thy 7.3.1 (Fundamental Theorem of Calculus (15t Form))
Suppose $\left\{\begin{array}{l}0 \\ f, F=[a, b] \rightarrow \mathbb{R} \text { functions, } \\ 0 E=\text { finite set of }[a, b] \quad \text { (E fa exceptional set) }\end{array}\right.$
(a) F is contünores on $[a, b]$,
such that $\left\{\begin{array}{l}\left.\text { (b) } F^{\prime}(x)=f(x) \quad \forall x \in[a, b]\right) E,\end{array}\right.$
(c) $f \in R[a, b]$

Then

$$
\int_{a}^{b} f=F(b)-F(a)
$$

Pf: With the finite \# of points iv E,
 $[a, b]$ is subdivided into finite number of subintenvals such that $F^{\prime}(x)=f(x)$ on the subintervals except passably at endpoints.

Then by Thu 7.1 .3 \& Thm7.2.9, one can reduce the proof of the The to the case that

$$
E=\{a, b\} \quad \text { two end points only }
$$

ie. $F^{\prime}(x)=f(x), \forall x \in(a, b)$.

(Exercise 7.3.1 of the Textbook, using F ts a $\sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right)=F(b)-F(a)$)
For this special case, consider any $\varepsilon>0$.
Then $f \in R[a, b]$ (assumption (C)) \Rightarrow
$\exists \delta_{\varepsilon}>0$ such that
if $\dot{\theta}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ satisfies $\|\dot{\mathscr{P}}\|<\delta_{\varepsilon}$, (any tags t_{i})
then $\left|S(f, \dot{\infty})-\int_{a}^{b} f\right|<\varepsilon$. (t)
By Mean Value Thm 6.2.4, $\exists u_{i} \in\left(x_{i-1}, x_{i}\right)$ sit.

$$
\begin{aligned}
F\left(x_{i}\right)-F\left(x_{i-1}\right) & =F^{\prime}\left(u_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =f\left(u_{i}\right)\left(x_{i}-x_{i-1}\right), \quad \forall i=1, \cdots, n
\end{aligned}
$$

since $F^{\prime}=f$ exists an (a, b) (assumption (b) of the special case) (\& coo on $[a, b])$
Hence $F(b)-F(a)=\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right]$

$$
=\sum_{i=1}^{n} f\left(u_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

Refine the togged partition $\dot{\otimes}_{u}=\left\{\left[x_{i-1}, x_{i}\right], u_{i}\right\}_{i=1}^{n}$ (same partition with now tags).
Then $\left\|\dot{\theta}_{u}\right\|<\delta_{\varepsilon}$ and

$$
\begin{aligned}
& F(b)-F(a)=S\left(f, \dot{\gamma}_{u}\right) \\
\therefore \quad & \left|F(b)-F(a)-\int_{a}^{b} f\right|<\varepsilon, \text { by }(*)
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, $\quad \int_{a}^{b} f=F(b)-F(a)$.

Remarks: (i) If $E=\varnothing$, then assumption (b) $\Rightarrow \operatorname{asscunp} i$ ion (a).
(ii) One may allow f defused on $[a, b]$ except füite number of points as we can extend f to all $x \in[a, b]$ by setting $f(c)=0$ for $c \notin \operatorname{domain}(f)$ originally.
(iii) F differentiable on $[a, b] \nRightarrow F^{\prime} \in Q[a, b]$
\therefore assumption (c) is not automatically satisfied even
$E=\phi \&$ asoungtion (b) is satisfied. (E g7.3.2(e))
Eg 73.2 (a) $\left\{\begin{array}{l}\cdot F(x)=\frac{1}{2} x^{2}, \forall x \in[a, b] \text { is contūuous on }[a, b] \text {, }\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
F^{\prime}(x)=x, \forall x \in[a, b] \quad(\therefore E=\phi) \\
.
\end{array} F^{\prime}(x)=x \in \mathscr{R}[a, b] \quad \text { (says by ibm 7.2.7, ct } \Rightarrow\right. \text { integrable) } \\
& \therefore S_{a}^{b} x d x=F(b)-F(a)=\frac{1}{2}\left(b^{2}-a^{2}\right) .
\end{aligned}
$$

(b) Suppre $[a, b]$ is a closed interval s.t. $\quad\left(\operatorname{Arctan} x=\tan ^{-1} x\right.$) $G(x)=\operatorname{Arctan} x$ is defined on $[a, b] \quad \quad \quad$ fa üstance $[a, b]<\left(-\frac{\pi}{3}, \frac{\pi}{2}\right)$)

Then $G^{\prime}(x)=\frac{1}{x^{2}+1}, \forall x \in[a, b]$ \& is contüucus on $[a, b]$
\therefore (b) setesfied with $E=\varnothing$. (with $f(x)=\frac{1}{x^{2}+1}$)
Hence (a) satisfied automatically. (G^{\prime} exicit $\Rightarrow G$ cto)
And Thm $7.2 .7 \Rightarrow(c)$ is also satesfied.

$$
\therefore \quad \int_{a}^{b} \frac{d x}{x^{2}+1}=\operatorname{Arctan} b-\operatorname{Arctan} a
$$

(c) $A(x)=(x)$ for $x \in[-10,10]$, cts.
(one cardo any $[\alpha, \beta]$ with $\alpha, \beta>0$)
Then

$$
A^{\prime}(x)= \begin{cases}1, & \text { fa } x \in(0,10] \\ \text { doean't exuat, } & \text { for } x=0 \\ -1, & \text { fa } x \in[-10,0)\end{cases}
$$

Recall the signum function

$$
\begin{gathered}
\operatorname{sgn}(x)= \begin{cases}1, & x>0 \\
0, & x=0 \\
-1, & x<0\end{cases} \\
\left.\therefore \quad A^{\prime}(x)=\operatorname{sgn}(x) \quad \forall x \in[-10,10] \backslash 30\right\} \quad(\text { i.e. } E=\{0\})
\end{gathered}
$$

Note that sgn(x) equals a step function except at one point, Thu 7.2.5 $(8$ Thm 7.1.3) $\Rightarrow \operatorname{sgn}(x) \in R[-10,10]$.
Hence $\int_{-10}^{10} \operatorname{sgn}(x) d x=A(10)-A(-10)=10-10=0$.
(d) $H(x)=2 \sqrt{x}$ on $[0, b]$.

Then $H(x)$ its on $[0, b]$,

$$
H^{\prime}(x)=\frac{1}{\sqrt{x}} \quad \forall x \in(0, b] \quad(E=\{0\})
$$

Note that $h(x)=\frac{1}{\sqrt{x}}$ is cubounded on $[0, b]$, $h \notin R[0, b]$ (No matter how we define $H^{\prime}(0)$)
\therefore Fundamental The 7.3.1 doesn't apply!
(Need to consider in proper integrals, which is equivalent to applying Them 7.3 .1 to $[\varepsilon, b]$, and then lettug $\varepsilon \rightarrow 0$.)
(e)

$$
K(x)= \begin{cases}x^{2} \cos \left(\frac{1}{x^{2}}\right), & x \in(0,1] \\ 0, & x=0\end{cases}
$$

Then

$$
K^{\prime}(x)= \begin{cases}2 x \cos \frac{1}{x^{2}}+\frac{2}{x} \sin \left(\frac{1}{x^{2}}\right), & x \in(0,1] \\ 0, & \text { if } x=0 \quad(\text { eg } 6.1 .7(0))\end{cases}
$$

That is, K differentiable on $[0,1]$, \& lime cts on $[0,1]$.

However K^{\prime} is mounded and
therefor $K^{\prime} \notin R[0,1]$, assumption (C) docent satisfy!

Def 7.3.3: If $f \in R[a, b]$, then the function defused by

$$
F(z)=\int_{a}^{z} f \quad \text { fa } z \in[a, b]
$$

is called the ïdefüite integral of f with basepount a.
(One may use other point as base point \& is still called indefuicte integral (Ex7.3.6))

Thm 7.3.4 If $f \in \operatorname{Re}[a, b]$, then

$$
F(z)=\int_{a}^{z} f \text { is continuous on }[a, b]
$$

and in fact, if $|f(x)| \leqslant M, \forall x \in[a, b]$, then (*) $\quad|F(z)-F(w)| \leqslant M|z-w|, \quad \forall z, w \in[a, b]$.

Remands: (i) M exits because $f \in R[a, b] \Rightarrow f$ is bid
(ii) (*) is called a lipsclitzcondition, much stronger than just continuity.
If $\forall z, w \in[a, b]$ with $w \leqslant z$, Additivity Thu $7.2 .9 \Rightarrow$

$$
\begin{aligned}
& F(z)=\int_{a}^{z} f=\int_{a}^{w} f+\int_{w}^{z} f=F(w)+\int_{w}^{z} f \\
& \therefore \quad F(z)-F(w)=\int_{w}^{z} f .
\end{aligned}
$$

If $\quad-M \leqslant f(x) \leqslant M, \forall x \in[a, b]$,

$$
\begin{aligned}
& \operatorname{Thm} f .1,5(c) \Rightarrow-M(z-w) \leqslant \int_{w}^{z} f \leqslant M(z-w) \\
& \therefore|F(z)-F(w)|=\left|\int_{w}^{z} f\right| \leqslant M(z-w)=M|z-w|
\end{aligned}
$$

(since $w \leqslant z$)
Clearly, the case $z \leqslant \omega$ follows invuediately too.

Thu 7.35 (Fundamental Therem of Calculus ($2^{\text {nd }}$ Form)) Let $f \in R[a, b]$ and contrunos at c.
Then $F(z)=\int_{a}^{z} f$ is differentiable at $z=c$ and

$$
F^{\prime}(c)=f(c)
$$

If Weill prove only for the right-hand dourvative

$$
\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)
$$

The left-hand derivative can be handled similarly.
Therefue, we assume $c \in[a, b]$.

Since f is contindars at $c, \forall \varepsilon>0, \exists \eta_{\varepsilon}>0$ s.t. if
(*) $|f(x)-f(c)|<\varepsilon, \quad \forall x \in\left[c, c+\eta_{\varepsilon}\right)$. (consider only right side)
Let $h \in\left(0, \eta_{\varepsilon}\right)$, then Additivity The 7.2.f (Cor 7.2.10)
$\Rightarrow f \in R[a, c+h], R[a, c] \& R[c, c+h]$ and

$$
\int_{a}^{c+h} f=\int_{a}^{c} f+\int_{c}^{c+h} f
$$

ie. $\quad F(c+h)-F(c)=\int_{c}^{c+h} f$
$B y(*) \quad f(c)-\varepsilon<f(x)<f(c)+\varepsilon, \quad \forall x \in\left[c, c+\eta_{\varepsilon}\right)$
we have $(f(c)-\varepsilon) h \leqslant \int_{c}^{c t h} f \leqslant(f(c)+\varepsilon) h$,
which unplies $f(c)-\varepsilon \leqslant \frac{F(c+h)-F(c)}{h} \leqslant f(c)+\varepsilon$

$$
\Rightarrow \quad\left|\frac{F(c+h)-F(c)}{h}-f(c)\right| \leqslant \varepsilon, \quad \forall h \in\left(0, \eta_{\varepsilon}\right)
$$

It proves that $\lim _{h \rightarrow 0^{+}} \frac{F(c+h)-F(c)}{h}=f(c)$

The 7.3.6 If f is continuous on $[a, b]$, then

- $F(x)=S_{a}^{x} f$ is differentiable on $[a, b]$, and
- $F^{\prime}(x)=f(x), \forall x \in[a, b]$

Pf: f cts on $[a, b] \Rightarrow f \in \ell[a, b]$ \& cts at every pt. $c \in[a, b]$

Eg 7.3.7
(a) $f(x)=\operatorname{agn} x$ on $[-1,1]$.

Then : $f \in R[-1,1]$ (agnals a step function except at a point)

- f not coutm̄acus at $x=0$, but carinas $\forall x \in[-1,1] \backslash 10\}$.

Simply calculation: indefuite integral with basepaint -1 is

$$
F(x)=\int_{-1}^{x} \operatorname{sgn}(x) d x=|x|-1 \quad(E x \mid)
$$

One can see that $F^{\prime}(0)$ doesn't exist ("f cts at c "is a $\begin{gathered}\text { necessary condition }\end{gathered}$) and F is not an autiderieative of $f(x)=\operatorname{sgn}(x)$.
(b) Let $h=$ Thomae's function

$$
e^{\mathbb{N}}=\{1,2,3 ; \cdots\}
$$

$$
h(x)= \begin{cases}\frac{1}{n}, & \text { if } x=\frac{m}{n} \in[0,1] \& m_{2,}^{m} n \text { have no ca } \\ 1, & \text { if } x=0 \\ 0, & \text { if } x \text { is irrational } \& x \in[0,1] .\end{cases}
$$

Then by Eg7.1.7, one concludes that

$$
\begin{aligned}
& H(x)=\int_{0}^{x} h \equiv 0, \forall x \in[0,1] \\
\Rightarrow & H^{\prime}(x)=0 \text { exists } \forall x \in[0,1]
\end{aligned}
$$

However, $H^{\prime}(x) \neq G(x), \forall$ rational $x \in[0,1]$.

The 7.3.8 (Substitution Thenem)
Let $, f: I \rightarrow \mathbb{R} \xrightarrow{t_{\Delta}}, \quad(I=$ interval $)$

- $\varphi=[\alpha, \beta] \rightarrow \mathbb{R}$ st. $\varphi^{\prime}(t)$ bidets \& cts $\forall t \in[\alpha, \beta]$, (ie. Y has a continuous derivative)

$$
\varphi([\alpha, \beta]) \subset I
$$

Then $\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) d t=\int_{\varphi(\alpha)}^{\varphi(\beta)} f(x) d x$
Notes: (i) $t \& x$ in the fanula are clussuy variables, just using them for convenient in practice: thinking of change of sainables $x=\varphi(t)$ (but it is not necessary a "change of sociables" as φ is not assumed to be one-to-one and onto.)
In fact, the famula can be written as

$$
\int_{\alpha}^{\beta}(f \circ \varphi) \cdot \varphi^{\prime}=\int_{\varphi(\alpha)}^{\varphi(\beta)} f
$$

(ii) The famula colds also fur $\varphi(\beta) \leqslant \varphi(\alpha)$ as we defined before.

Pf of Thm 73.8 : Ex 7.3.17 (Easy application of Fundamental Thru \& Chain rule)

Eg 7.3.9 Too easy, Omitted

Lebesgue's Integrability Criterion
Def 7.3 .10
(a) A set $Z \subset \mathbb{R}$ is said to be a null set (set of measure zero) if $\forall \varepsilon>0, \exists$ a countable collection $\left\{\left(a_{k}, b_{k}\right)\right\}_{k=1}^{\infty}$ of open intervals (could be overlapped) such that

$$
Z \subseteq \bigcup_{k=1}^{\infty}\left(a_{k}, b_{k}\right) \text { and } \sum_{k=1}^{\infty}\left(b_{k}-a_{k}\right) \leqslant \varepsilon \quad \text { length of interal }\left(a_{k}, b_{k}\right)
$$

(b) If $Q(x)$ is a statement about $x \in I$, we say that "Q(x) holds almost everywhere on I" (a " $Q(x)$ holds far almost very (almost all) $x \in I$ ") if \exists a null set $Z C I$ st.
$Q(x)$ holds $\forall x \in I \backslash \tau$.
In this case, we write $Q(x)$ for a.e. $x \in I$.
Remarks: (i) "null set" may means "empty set" for same people.
So "set of measure zero" is used more often.
(ii) Def (a) meaus Z cau be covered by a set of arbitrary small total leyth. (Kind of "leysth of $Z=0$ ", but it is difficult to defire "longth" of cubitrary setsin \mathbb{R}.)

