(c) $\quad h(x)=x \quad(f u x \in[0,1]) \in R[0,1] \& \int_{0}^{1} h=\frac{1}{2}$.

Pf: Let $\gamma=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be a partition of I.
Take tags $t_{i}=q_{i}$ be the wid-pounts,
ie. $\quad q_{i}=\frac{x_{i-1}+x_{i}}{2}$.
Then the corresponding tagged partition $\dot{Q}=\left\{\left[x_{i-1}, x_{i}\right] ; q_{i}\right\}_{i=1}^{n}$ has Riemann sum

$$
\begin{aligned}
S(h ; \dot{Q}) & =\sum_{i=1}^{n} h\left(q_{i}\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} q_{i}\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} \frac{1}{2}\left(x_{i}+x_{i-1}\right)\left(x_{i}-x_{i-1}\right)=\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{2}-x_{i-1}^{2}\right) \\
& =\frac{1}{2}\left[\left(x_{1}^{2}-x_{0}^{2}\right)+\left(x_{2}^{2}-x_{1}^{2}\right)+\cdots+\left(x_{n}^{2}-x_{n-1}^{2}\right)\right] \\
& =\frac{1}{2}\left(x_{n}^{2}-x_{0}^{2}\right)=\frac{1}{2} \quad\left(x_{n}=1, x_{0}=0\right)
\end{aligned}
$$

Now if $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ is a togged partition with the same partition but a mbitrary tags t_{i}, then $\|\dot{\infty}\|=\|\dot{Q}\|<\delta$, and

$$
\begin{aligned}
|S(h ; \dot{p})-S(h, \dot{Q})| & =\left|\sum_{i=1}^{n} h\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} h\left(q_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
& =\left|\sum_{i=1}^{n}\left(t_{i}-q_{i}\right)\left(x_{i}-x_{i-1}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant \sum_{i=1}^{n}\left|t_{i}-q_{i}\right|\left(x_{i}-x_{i-1}\right)<\delta \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \\
& =\delta \quad\left(\begin{array}{ll}
\text { suse } & t i, q_{i} \in\left[x_{i-1}, x_{i}\right] \\
\text { and } x_{i}-x_{i-1}<\delta
\end{array}\right)
\end{aligned}
$$

Using $S(h ; \dot{Q})=\frac{1}{2}$ fa any partition with xiidpt tags, we have $\forall \dot{P}$ with $\|\dot{\rho}\|<\delta$,

$$
\left|S(a ; \dot{\theta})-\frac{1}{2}\right|<\delta
$$

Hence $\forall \varepsilon>0$, take $\delta_{\varepsilon}=\varepsilon>0$, we have
$\dot{\theta}$ with $\|\dot{\theta}\|<\delta_{\varepsilon} \Rightarrow\left|S(\theta ; \dot{\theta})-\frac{1}{2}\right|<\varepsilon$

$$
\therefore h \in R[0,1] \quad \& \quad \int_{a}^{b} h=\frac{1}{2}
$$

(d)

$$
G(x)= \begin{cases}\frac{1}{n}, \text { if } x=\frac{1}{n} & (n=1,2, \cdots) \\ 0 \text {, elsewhere on }[0,1] & \frac{1}{2} \\ \text { (Riemann) integrable on }[0,1] & \frac{1}{3}\end{cases}
$$ and $\int_{0}^{1} G=0$.

Pf: $\forall \varepsilon>0, \quad E_{\varepsilon}=\{x \in[0,1]: G(x) \geqslant \varepsilon\}$ $=\left\{1, \frac{1}{2}, \cdots, \frac{1}{N_{\varepsilon}}\right\}$ where $N_{\varepsilon}=\left[\frac{1}{\varepsilon}\right]$ the largest is a finite set. integer $\leqslant \frac{1}{\varepsilon}$.

Let $\delta=\frac{\varepsilon}{2 N \varepsilon}>0$.
If $\gamma^{\circ}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ is a tagged partition with $\|\dot{\theta}\|<\delta$.
Then

$$
\begin{aligned}
S(G ; \dot{\beta}) & =\sum_{i=1}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{\substack{i=1 \\
t_{i} \neq E_{\varepsilon}}}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{\substack{i=1 \\
t_{i} \in E_{\varepsilon}}}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)
\end{aligned}
$$

$t_{i} \notin E_{\varepsilon} \Rightarrow 0 \leqslant G\left(t_{\bar{i}}\right)<\varepsilon$

$$
\therefore 0 \leqslant \sum_{\substack{i=1 \\ t_{i} \neq \notin \varepsilon}}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)<\varepsilon \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\varepsilon
$$

There are only N_{ε} number of pts in $E_{\varepsilon}, \& 0 \leqslant G(x) \leqslant 1$, and a tag belongs to at most two subintenals

$$
\begin{aligned}
\therefore \quad 0 \leqslant \sum_{\substack{i=1 \\
x_{i} \in E_{\varepsilon}}}^{n} G\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)<\sum_{\substack{i=1 \\
t_{i} \in E_{\varepsilon}}}^{n} \delta<2 N_{\varepsilon}-\delta=\varepsilon
\end{aligned}
$$

Hence

$$
0 \leqslant S(G ; \dot{P})<\varepsilon+\varepsilon=2 \varepsilon \text {, fa any } \dot{8} \text { with }\|\dot{P}\|<\delta_{\varepsilon} \text {. }
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
G \in R[0,1] \quad \text { and } \quad \int_{0}^{1} G=0
$$

Properties of Integral
The 7.1 .5 Suppne $f, g \in R[a, b]$. Then
(a) $k f \in R[a, b], \forall k \in \mathbb{R}$ and

$$
S_{a}^{b} k f=k \int_{a}^{b} f
$$

(b) $f+g \in R[a, b]$ and

$$
\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

(c) $f(x) \leqslant g(x) \quad \forall x \in[a, b] \Rightarrow \int_{a}^{b} f \leqslant \int_{a}^{b} g$.

Pf: (a) Ex. (Similar to the proof of (b) \& easier)
(b) $f, g \in R[a, b] \Rightarrow$

$$
\forall \varepsilon>0, \exists \delta_{1}>0 \text { sit. }\left|S(f, \dot{\theta})-\int_{a}^{b} f\right|<\varepsilon, \forall \dot{\gamma} \text { with }\|\dot{\theta}\|_{<} \delta_{1}
$$

$$
\text { \& } \exists \delta_{2}>0 \text { sit. }\left|S(g, \dot{\theta})-\int_{a}^{b} g\right|<\varepsilon, \forall \dot{\theta} \text { with }\|\dot{\theta}\|_{<} \delta_{2} \text {. }
$$

Also note that fa any $\dot{\mathscr{P}}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$

$$
\begin{aligned}
S(f+g ; \dot{\phi}) & =\sum_{i=1}^{n}(f+g)\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =S(f ; \dot{\rho})+S(g ; \dot{\phi})
\end{aligned}
$$

Then $\forall \dot{\infty}$ with $\|\dot{\rho}\|<\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, we have

$$
\begin{aligned}
& \left|S(f+g ; \dot{\theta})-\left(\int_{a}^{b} f+\int_{a}^{b} g\right)\right| \\
& \quad \leqslant\left|S(f ; \dot{\phi})-\int_{a}^{b} f\right|+\left|S(g ; \dot{\theta})-\int_{a}^{b} g\right| \\
& \quad<\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we're proved that

$$
f+g \in R[a, b] \text { and } \int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g
$$

(c) As in (b), we conclude, $\forall \varepsilon>0, \exists \delta>0$ st. for $\dot{\gamma}$ with $\|\dot{\theta}\|<\delta$,

$$
\begin{aligned}
& \left|S(f ; \dot{\theta})-\int_{a}^{b} f\right|<\varepsilon \text { and }\left|S(g ; \dot{\theta})-\int_{a}^{b} g\right|<\varepsilon \\
\Rightarrow \quad & \int_{a}^{b} f-\varepsilon<S\left(f_{j} \dot{\theta}\right) \& \quad S(g ; \dot{\theta})<\int_{a}^{b} g+\varepsilon
\end{aligned}
$$

Now $f(x) \leqslant g(x), \forall x \in[a, b] \Rightarrow$

$$
\begin{aligned}
& S(f ; \dot{\gamma})=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \leqslant \sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)=S(g ; \dot{\theta}) \\
& \therefore \quad \int_{a}^{b} f-\varepsilon<S(f ; \dot{\theta}) \leqslant S(g ; \dot{\gamma})<\int_{a}^{b} g+\varepsilon
\end{aligned}
$$

ar $\quad \int_{a}^{b} f<\int_{a}^{b} g+2 \varepsilon$.
Since $\varepsilon>0$ is arbitrary, $\int_{a}^{b} f \leqslant \int_{a}^{b} g \not \nVdash$

Boundedness Thenew
Thu 7.1. $b \quad f \in R[a, b] \Rightarrow f$ is bounded on $[a, b]$.
(of course, $f \in R[a, b] * f$ is bounded on $[a, b]$, see later section) Pf $L e t f \in R[a, b]$ and $\int_{a}^{b} f=L$.
And suppose on the contrary that f is unbounded on $[a, b]$ $f \in R[a, b]$ with $S_{a}^{b} f=L \quad$ (Take $\varepsilon=1$ in the def) \Rightarrow ヨ $\delta>0$ such that
$\forall \dot{\rho}$ with $\|\dot{\theta}\|<\delta$,

$$
\begin{align*}
& \left|S\left(f ; \theta^{\circ}\right)-L\right|<1 \\
\Rightarrow \quad & |S(f ; \dot{\theta})|<|L|+1 \tag{*}
\end{align*}
$$

If $\gamma=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be a partition of $[a, b]$.
Then f unbounded
$\Rightarrow \exists$ a subinterval $\left[X_{i_{0}-1}, X_{i_{0}}\right]$ sit.
f is unbounded on $\left[x_{i_{0}-1}, x_{i_{0}}\right]$.
Therefae, we can find $t_{i_{0}}$ such that

$$
\left|f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)\right|>|L|+1+\left|\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right|-(*)_{2}
$$

Then the corresponding tagged partition $\mathcal{F}^{\circ}=\left\{\left[x_{i-1}, x_{i}\right] ; t_{i}\right\}_{i=1}^{n}$, with tags $\left\{\begin{array}{l}t_{i}=x_{i} \text { for } i \neq i_{0} \\ t_{i_{0}}\end{array}\right.$
gives Riemann sum

$$
\begin{aligned}
& S(f: \dot{\theta})=f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)+\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& \Rightarrow \quad f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)=S(f ; \dot{\theta})-\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& \Rightarrow \quad\left|f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)\right| \leqslant|S(f ; \dot{\theta})|+\left|\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
&\left(b y(t)_{1}\right)<|L|+\left|+\left|\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right|\right.
\end{aligned}
$$

which contradicts (*)
$\therefore f$ meet be bounded.

