Ch 7 The Riemann Integral
§7.1 Riemann Integral
Def: If $I=[a, b]$ is a closed interval, then a partition of I is a finite, ordered set

$$
P=\left(x_{0}, x_{1}, \cdots, x_{n}\right)
$$

of points in I such that

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b
$$

Note: A partition $\gamma=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ is used to divide I into (interior) nou-overlapping subintenvals:

$$
I_{1}=\left[x_{0}, x_{1}\right], I_{2}=\left[x_{1}, x_{2}\right], \cdots, I_{n}=\left[x_{n-1}, x_{n}\right]
$$

Hence an alternate notation far P is

$$
P=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}
$$

Def: The norm (or mesh) of $\gamma=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ is defined by $\|\gamma\|=\max _{i=1 ; ; \eta}\left\{x_{i}-x_{i-1}\right\}$

$$
\begin{aligned}
& =\max \left\{x_{1}-x_{0}, x_{2}-x_{1}, \cdots x_{n}-x_{n-1}\right\} \\
& (=\text { length of largest subiutenval })
\end{aligned}
$$

Def: (1) If $t_{i} \in I_{i}=\left[x_{i-1}, x_{i}\right], \forall i=1, \cdots, n$ has been selected of each subinterval of a partition $\gamma=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ of $I=[a, b]$, then t_{i} are called tags of I_{i}.
(2) The partition $\gamma=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$, together with tags $t i$ is called a tagged partition of $I=[a, b]$ and is denoted by

$$
\dot{\theta}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}
$$

Def: If $\dot{\infty}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ is a tagged partition of $I=[a, b]$, then the Riemann sum of a
function $f:[a, b] \rightarrow \mathbb{R}$ is defined by (maynot"cantimums")

$$
S(f ; \dot{\phi})=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

Remark: This definition walks fa the case that $\dot{8}$ is a subset of a partition, and not the entire partition.

$S(f ; \dot{\gamma})=$ sum of (signed) areas of the n rectangles with bases $\left[x_{i-1}, x_{i}\right]$ \& heights $f\left(t_{i}\right), i=1, \cdots, n$.

Def 7.1.1 (1) A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be
Riemann integrable on $[a, b]$ if
$\exists L \in \mathbb{R}$ such that
$\forall \varepsilon>0, \exists \delta_{\varepsilon}>0$ such that
\forall tagged partition $\dot{\rho}$ of $[a, b]$ with $\|\dot{\rho}\|<\delta_{\varepsilon}$,

$$
|S(f ; \dot{\infty})-L|<\varepsilon .
$$

(2) The set of all Riemann integrable functions on $[a, b]$ will be denoted by $R[a, b]$.
(3) If $f \in R[a, b]$, the number L is uniquely determined (Thy 71.1), called the Riemann integral of f over $[a, b]$, \& is denoted by $\int_{a}^{b} f$ or $\int_{a}^{b} f(x) d x$ (x is a dummy variable, can be replaced by any other notation)

Remark: One often says that L is "the limit" of $S(f ; \dot{\theta})$ as $\|\dot{\gamma}\| \rightarrow 0$. However $S(f ; \dot{\theta})$ is not a function of $\|\dot{\theta}\|$, it is not the limit (of functions) that defined before.
(there are many $\dot{\gamma}$ with same $\left\|\not \theta^{*}\right\|$)

Thm 7.1.2 If $f \in R[a, b]$, then the value of the integral is uniquely determined.

Pf: Suppre L' and L' both satisfy the definition $\mathcal{F}_{1} .1$. Then $\forall \varepsilon>0, \exists \delta_{\frac{\varepsilon}{2}}^{\prime}>0$ such that

$$
\left|S\left(f ; \dot{\phi}_{1}\right)-L^{\prime}\right|<\frac{\varepsilon}{2} \quad \forall \dot{\phi}_{1}^{\dot{p}} \text { with }\left\|\dot{\phi}_{1}\right\|<\frac{\delta_{\varepsilon}^{\prime}}{\prime}
$$

and $\exists \delta_{\frac{\varepsilon}{2}}^{/<}>0$ such that

$$
\left|S\left(f ; \dot{\gamma}_{2}\right)-L^{\prime \prime}\right|<\frac{\varepsilon}{2} \quad \forall \dot{\gamma}_{2} \text { with }\left\|\dot{\gamma}_{2}\right\|<\frac{\delta_{\varepsilon}^{\prime \prime}}{\prime \prime}
$$

Let $\delta_{\varepsilon}=\min \left\{\delta_{\frac{\varepsilon}{2}}^{\prime}, \delta_{\frac{\varepsilon}{2}}^{\prime \prime}\right\}>0$.
If \dot{P} is a togged partition with $\|\dot{P}\|<\delta_{\varepsilon}$, then $\|\dot{\rho}\|<\delta_{\varepsilon / 2}^{\prime}$ and $\|\dot{\rho}\|<\delta_{\varepsilon / 2}^{\prime \prime}$.

Hence $\left|S(f ; \dot{\theta})-L^{\prime}\right|<\frac{\varepsilon}{2}$ and $\left|, S^{\prime}(f ; \dot{\theta})-L^{\prime \prime}\right|<\frac{\varepsilon}{2}$

$$
\begin{aligned}
\Rightarrow\left|L^{\prime}-L^{\prime \prime}\right| & \leqslant\left|S(f ; \dot{\theta})-L^{\prime}\right|+\left|S(f ; \dot{\theta})-L^{\prime \prime}\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have $L^{\prime}=L^{\prime \prime}$.

The 7.1.3 If, $g \in R[a, b]$ (Riemann integrable)

- $f(x)=g(x)$ except for a finite number of points.

Then $\cdot f \in R[a, b]$ and

- $\int_{a}^{b} f=\int_{a}^{b} g$.

Pf: Only need to prove the case that $f(x)=g(x)$ except far one point in $[a, b]$.

Then induction implies the Theorem.

Let c be the point in $[a, b]$
sit. $\quad f(c) \neq g(c)$.

Then $f(x)=g(x), \forall x \in[a, b] \backslash\{c\}$.
Let $L=S_{a}^{b} g$. (By assumption that $g \in R[a, b]$, it excite)

For any tagged partition $\dot{\theta}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$,
then (i) $c \in\left(x_{i_{0}}, x_{i_{0}}\right)$ fa some $i_{0} \in\{1,2, \cdots, n\}$
u (ii) $c=x_{i_{0}} \quad$ fa some $i_{0} \in\{1,2, \ldots n\}$.
For case (i), $f(x)=g(x)$ fa all $\left[x_{i-1}, x_{i}\right], i \neq i_{0}$

$$
\Rightarrow \quad f\left(t_{i}\right)=g\left(t_{i}\right)
$$

And hence

$$
\begin{aligned}
& S(f ; \dot{\theta})-S(g ; \dot{\theta})= \sum_{i \neq i_{0}} f(t)\left(x_{i}-x_{i-1}\right)-\sum_{i \neq i_{0}} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&+f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)-g\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right) \\
&=\left(f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)\right. \\
& \Rightarrow|S(f ; \dot{\theta})-S(g ; \dot{\theta})| \leqslant\left|f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\right|\left|x_{i_{0}}-x_{i_{0}-1}\right| \\
& \leqslant(|f(c)|+|g(c)|)\|\dot{\theta}\| .
\end{aligned}
$$

Siniclary for core (ii)

$$
\begin{aligned}
& S(f ; \dot{\theta})-S(g ; \dot{\theta})=\sum_{\substack{i=i=1 \\
j_{0}+1}}\left[f\left(x_{i}\right)-g\left(t_{i}\right)\right]\left(x_{i}-x_{i-1}\right) \\
& +f\left(t_{i 0}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)-g\left(t_{i}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right) \\
& +f\left(t_{i+1}\right)\left(x_{i_{0}+1}-x_{i_{0}}\right)-g\left(t_{i_{01}}\right)\left(x_{i+1}-x_{i_{0}}\right) \\
& =\left(f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)+\left(f\left(t_{i_{0}+1}\right)-g\left(t_{i_{01}}\right)\right)\left(x_{i_{0}+1}-x_{i_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\therefore|S(f ; \dot{\theta})-S(g ; \dot{\theta})| & \leqslant(|f(c)|+|g(c)|)\|\dot{\gamma}\|+(|f(c)+|(g(c))\|\dot{\theta}\| \\
& =2(|f(c)|+|g(c)|)\|\dot{\gamma}\| .
\end{aligned}
$$

Hence, in both cases.

$$
|S(f ; \dot{\theta})-S(g ; \dot{\theta})| \leqslant 2(|f(c)|+|g(c)|)\|\dot{\gamma}\|
$$

Therefore, $\forall \varepsilon>0$, fr $\delta_{1}=\frac{\varepsilon}{5(|f(c)|+|g(c)|)}$, we have $\forall \dot{\gamma}$ with $\|\dot{\gamma}\|<\delta_{1}$,

$$
|S(f ; \dot{\gamma})-S(g ; \dot{\gamma})| \leqslant 2(|f(c)|+|g(c)|) \cdot \frac{\varepsilon}{5(|f(c)|+|g(c)|)}<\frac{\varepsilon}{2} .
$$

Now, by $g \in R[a, b] \& L=\int_{a}^{b} g, \exists \delta_{2}>0$ s.t. $\forall \gamma^{8}$ with $\left\|\rho^{8}\right\|<\delta_{2}$,

$$
|S(g ; \dot{\theta})-L|<\frac{\varepsilon}{2} .
$$

letting $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$, we have $\forall \dot{\rho}$ with $\|\dot{\gamma}\|<\delta$,

$$
\begin{aligned}
|S(f ; \dot{\gamma})-L| & \leqslant|S(f ; \dot{\rho})-S(g ; \dot{\gamma})|+|S(g ; \dot{\phi})-L| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

$\therefore f \in R[a, b]$ and $\int_{a}^{b} f=L=\int_{a}^{b} g$.
$\operatorname{Eg} 7.1 .4$
(a) If $f \equiv$ cost., then $f \in \mathcal{R}[a, b]$

Pf: Let the coast. be k.
Then $\quad f(x)=k \quad \forall x \in[a, b]$
If $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged pontition of $[a, b]$, then corresponding Riemann sum

$$
\begin{aligned}
S(f ; \dot{\theta}) & =\sum_{i=1}^{n} f(t i)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} k\left(x_{i}-x_{i-1}\right)=k(b-a)
\end{aligned}
$$

$\therefore \forall \varepsilon>0$, we can just pick any $\delta>0$ and have

$$
\begin{aligned}
& |S(f, \dot{\theta})-k(b-a)|=0<\varepsilon, \forall \dot{\theta} \text { with }\|\dot{\theta}\|<\delta \\
\therefore \quad & f \equiv k \in R[a, b] .
\end{aligned}
$$

In fact, we have proved that $\int_{a}^{b} k=k(b-a)$
(b) $g:[0,3] \rightarrow \mathbb{R}$ defined by $g(x)= \begin{cases}3, & 1<x \leqslant 3 \\ 2, & 0 \leqslant x \leqslant 1\end{cases}$

is (Riemann) integrable \& $\int_{0}^{3} g=8$.

Pf: Let $\dot{P}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$
Let $k=1 ; \cdots, n$ such that
$0 \leqslant t, \cdots \leqslant t_{k} \leqslant 1$ and $1<t_{k+1} \leqslant \cdots \leqslant t_{n} \leqslant 3$

Let $\quad \dot{\mathscr{P}}_{1}=\left\{\left[x_{i-1}, x_{i}\right], 大_{i}\right\}_{i=1}^{k}$

and $\dot{\gamma}_{2}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=k+1}^{n}$
(Using the remark of the definition of Riemann sum)
we have

$$
\begin{aligned}
S(g ; \dot{\theta}) & =\sum_{i=1}^{k} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i=k+1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =S\left(g ; \dot{\gamma}_{1}\right)+S\left(g ; \dot{\gamma}_{2}\right)
\end{aligned}
$$

Suppress that $\|\dot{\gamma}\|<\delta$ fa some $\delta>0$.
Then $t_{k} \leqslant 1, \quad X_{k-1} \leqslant t_{k} \leqslant X_{k}$ and $X_{k}-X_{k-1}<\delta$,
we have $\quad x_{k}<\delta+x_{k-1} \leqslant \delta+t_{k} \leqslant 1+\delta$
(notation in text bon) $\rightarrow U_{1}=\bigcup_{i=1}^{k}\left[x_{i-1}, x_{i}\right]=\left[0, x_{k}\right] \subset[0,1+\delta]$.

On the other hand, we claim that $1-\delta \leqslant X_{k}$.

Suppose not, then $1-\delta>x_{k}$.

From the choice of $k, t_{k+1}>1$.

$$
\therefore \quad x_{k+1} \geq t_{k+1}>1
$$

Hence $\delta>x_{k+1}-x_{k}>1-(1-\delta)=\delta$,

which is a contradiction.

$$
\therefore \quad 1-\delta \leqslant X_{k} .
$$

Together we have

$$
[0,1-\delta] \subset U_{1}=\bigcup_{i=1}^{k}\left[x_{i-1}, x_{i}\right]=\left[0, x_{k}\right] \subset[0,1+\delta]
$$

Ther-fue

$$
\begin{aligned}
S\left(g_{i} \dot{p}_{1}\right)=\sum_{i=1}^{k} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)= & 2 x_{k} \\
& \quad\left(t_{i} \leqslant 1 \Rightarrow g\left(t_{i}\right)=2\right)
\end{aligned}
$$

$$
\Rightarrow \quad 2(1-\delta) \leqslant S\left(g ; \dot{\phi}_{1}\right) \leqslant 2(1+\delta) \quad(t)_{1}
$$

Suivilarly,

$$
\begin{aligned}
S\left(g ; \dot{P}_{2}\right)=\sum_{i=k+1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)= & 3\left(3-x_{k}\right) \\
& \left(t_{i}>1 \Rightarrow g\left(t_{i}\right)=3\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad 3(3-(1+\delta)) & \leqslant S\left(g ; \dot{\rho}_{2}\right) \leqslant 3(3-(1-\delta)) \\
3(2-\delta) & \leqslant S\left(g ; \dot{\rho}_{2}\right) \leqslant 3(2+\delta)-(*)_{2}
\end{aligned}
$$

$B y(t)_{1}+(*)_{2}$, we have, fa $\dot{\gamma}$ satisfying $\|\dot{\gamma}\|<\delta$,

$$
2(1-\delta)+3(2-\delta) \leqslant S\left(g_{;} \dot{\theta}\right) \leqslant 2(1+\delta)+3(2+\delta)
$$

ie.

$$
\begin{aligned}
& 8-5 \delta \leqslant S(9 ; \dot{\rho}) \leqslant 8+5 \delta \\
\therefore \quad & |S(9 ; \dot{\gamma})-8| \leqslant 5 \delta .
\end{aligned}
$$

Therefue $\forall \varepsilon>0$, we con take $\delta_{\varepsilon}=\frac{\varepsilon}{10}>0$ to have $\forall \gamma^{\circ}$ with $\|\stackrel{\circ}{\circ}\|<\delta_{\varepsilon}$,

$$
|S(9 ; \dot{\theta})-8| \leqslant 5 \cdot \frac{\varepsilon}{10}<\varepsilon .
$$

