$\left(\operatorname{cont}^{-1} d\right)$
(\Leftrightarrow) Assuming $f^{\prime \prime}(x) \geqslant 0, \forall x \in I$.

$$
\forall t \in[0,1] \& \quad \forall \quad x_{1}, x_{2} \in I
$$

let $x_{0}=(1-t) x_{1}+t x_{2} \quad($ clearly $\in I)$
Then Taylor's The \Rightarrow

$$
\begin{aligned}
f\left(x_{1}\right) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(c_{1}\right)\left(x_{1}-x_{0}\right)^{2} \\
& \geqslant f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) \quad\binom{\text { fa same } c_{1} \text { between }}{x_{1} \& x_{0}}
\end{aligned}
$$

and $f\left(x_{2}\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{2}-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(c_{2}\right)\left(x_{2}-x_{0}\right)^{2}$

$$
\left.\begin{array}{l}
\geqslant f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{2}-x_{0}\right) \quad(\text { faspuve ca between } \\
x_{2} \& x_{0}
\end{array}\right)
$$

Newton's Method
Goal:

Equation of tangent line: $\quad y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
\therefore its intersection with x-axis, x_{2}, satisfies

$$
\begin{aligned}
& -f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x_{2}-x_{1}\right) \\
\therefore \quad & x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \quad\left(\text { provided } f^{\prime}\left(x_{1}\right) \neq 0\right)
\end{aligned}
$$

Successively $\quad x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad\binom{$ provided $f^{\prime}\left(x_{k}\right) \neq 0}{$ fa $k=1, \cdots, n}$
Hope (to find condition such that)

$$
x_{n} \rightarrow r \quad(\text { a zero (root) of } f) \text {. }
$$

Thu 6.4.7 (Newton's Method)
Let $. f:[a, b] \rightarrow \mathbb{R}$ twice differentiable $\quad(a<b)$

- $f(a) f(b)<0$ (ie $f(a), f(b)$ have opposite signs)
- \exists constants $m>0, M \geq 0$ such that

$$
\left|f^{\prime}(x)\right| \geqslant m>0 \quad \& \quad\left|f^{\prime \prime}(x)\right| \leqslant M, \quad \forall x \in[a, b] .
$$

Then \exists a subiuterval $I^{*} \subset[a, b]$

- containing a zero r of f such that
- $\forall x_{1} \in I^{*}$, the sequence $\left(x_{n}\right)$ defined by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \forall n=1,2,3 \cdots
$$

belongs to I^{*} and

- $\lim _{n \rightarrow \infty} x_{n}=r$

Moreover . $\left|x_{n+1}-r\right| \leqslant K\left|x_{n}-r\right|^{2} \quad \forall n=1,2,3 \ldots$
where $K=M / 2 m$.

Pf: Since $f(a) f(b)<0, f(a), f(b)$ have opposite signs (\& nonzero) f twice differentiable $\Rightarrow f$ cts. on $[a, b]$.

Intermediate (hm $\Rightarrow \exists r \in(a, b)$ such that $f(r)=0$.

Note that $\left|f^{\prime}(x)\right| \geqslant m>0, \forall x \in[a, b]$, Rolle's Thu
$\Rightarrow r$ is the unique zero of $f \bar{m}[a, b]$.
i.e. $f(x) \neq 0, \forall x \in[a, b] \backslash\{r\}, \quad(E x!)$

Now $\forall x^{\prime} \in I$, Taylor's Thm \Rightarrow

$$
0=f(r)=f\left(x^{\prime}\right)+f^{\prime}\left(x^{\prime}\right)\left(r-x^{\prime}\right)+\frac{f^{\prime \prime}\left(c^{\prime}\right)}{2}\left(r-x^{\prime}\right)^{2}
$$

for some c^{\prime} between $r \& x^{\prime}$.
(since f is twice diff.)
If $x^{\prime \prime}=x^{\prime}-\frac{f\left(x^{\prime}\right)}{f^{\prime}\left(x^{\prime}\right)}$, we have

$$
\begin{align*}
x^{\prime \prime} & =x^{\prime}+\frac{f^{\prime}\left(x^{\prime}\right)\left(r-x^{\prime}\right)+\frac{f^{\prime \prime}\left(c^{\prime}\right)}{2}\left(r-x^{\prime}\right)^{2}}{f^{\prime}\left(x^{\prime}\right)} \\
= & r+\frac{1}{2} \frac{f^{\prime \prime}\left(c^{\prime}\right)}{f^{\prime}\left(x^{\prime}\right)}\left(r-x^{\prime}\right)^{2} \\
\Rightarrow \quad\left|x^{\prime \prime}-r\right| & \leqslant \frac{1}{2} \frac{\left|f^{\prime \prime}\left(c^{\prime}\right)\right|}{\left|f^{\prime}\left(x^{\prime}\right)\right|}\left|x^{\prime}-r\right|^{2} \\
& \leqslant \frac{1}{2} \frac{M}{m}\left|x^{\prime}-r\right|^{2}=k\left|x^{\prime}-r\right|^{2} \tag{k}
\end{align*}
$$

Choose $\delta>0$ such that

$$
\delta<1 / k \quad \& \quad[r-\delta, r+\delta] \subset[a, b]
$$

and let $I^{*}=[r-\delta, r+\delta]$
Then, if $x_{n} \in I^{*}(C[a, b])$ for some $n=1,2,3, \cdots$,
we have, from $(*)$,

$$
\begin{aligned}
& \left|x_{n+1}-r\right| \leqslant K\left|x_{n}-r\right|^{2} \leqslant K \delta^{2}<\delta \\
\therefore & x_{n+1} \in I^{*} .
\end{aligned}
$$

ie. $x_{n} \in I^{*} \Rightarrow x_{n+1} \in I^{*}$
Therefue, if $x_{1} \in I^{*}$, induction \Rightarrow
the sequence $\left(x_{n}\right) \subset I^{*}$,
and satisfies the required inequality

$$
\left|x_{n+1}-r\right| \leqslant K\left|x_{n}-r\right|^{2}, \forall n=1,2,3, \cdots
$$

Finally, to see "limit", we note list that

$$
\left|x_{n+1}-r\right| \leqslant K\left|x_{n}-r\right|^{2} \leqslant K \delta\left|x_{n}-r\right| \cdots(\theta)_{2}
$$

Then iterate $(*)_{2}$:

$$
\begin{aligned}
\left|x_{n+1}-r\right| & \leqslant(k \delta)\left|x_{n}-r\right| \leqslant(k \delta)\left(k \delta\left|x_{n-1}-r\right|\right) \\
& =(k \delta)^{2}\left|x_{n-1}-r\right| \leqslant \cdots \leqslant(k \delta)^{n}\left|x_{1}-r\right|
\end{aligned}
$$

Since $k \delta<1,(K \delta)^{n} \rightarrow 0$ as $n \rightarrow \infty$, and $\left|x_{1}-r\right|$ is a constant, we have

$$
\left|x_{n+1}-r\right| \rightarrow 0 \text { as } n \rightarrow \infty
$$

i.e. $\quad \lim _{n \rightarrow \infty} x_{n}=r$
eg 6.4.8 Using Newton's Method to approximate $\sqrt{2}$.
Sols: Convert the problem to a problem of funding root in order to use Newton's Method:

Consider $f(x)=x^{2}-2 \quad \forall x \in \mathbb{R}$.
Calculation $=f^{\prime}(x)=2 x \quad(\neq 0$ near the root,
as 0 is not a root $)$
($f^{\prime \prime}$ exists and satisfies the condition, but we don't need to find it explicitly in the approximation.)

One reed to guess an initial point x_{1}.
Since $1^{2}=1,2^{2}=4, \quad(f(1)=-1, f(2)=2)$
it seems reasonable to try $x_{1}=1$.
Note that $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}$

$$
\begin{aligned}
& =x_{n}-\frac{1}{2} x_{n}+\frac{1}{x_{n}} \\
& =\frac{1}{2}\left(x_{n}+\frac{2}{x_{n}}\right) \\
\therefore \quad x_{1}=1 \Rightarrow \quad x_{2} & =\frac{1}{2}\left(1+\frac{2}{1}\right)=\frac{3}{2}=1.5 \\
x_{3} & =\frac{1}{2}\left(\frac{3}{2}+\frac{2}{3 / 2}\right)=\frac{17}{12} \simeq 1.416666
\end{aligned}
$$

(Chock!) $\quad x_{5} \approx 1,414213562372$ (correct to II places).

Remarks
(a) (*) cal be written as $\left(k\left|x_{n+1}-r\right|\right) \leqslant\left(K\left|x_{n}-r\right|\right)^{2}$

Hence if $K\left|X_{n}-r\right|<10^{-m}$,
then $k\left|X_{n+1}-r\right|<10^{-2 m}$
\therefore number of significant digits in $K\left|x_{n}-r\right|$
has been doubled.
And hance, the sequence (X_{n}) generated by Newton's method is said to "converge quadratically".
(b) Choose of initial x_{1} is uinpataut (ie. has to be in I^{*}), otherwise (X_{n}) may not converge to the zero (root).

Possible situations:

$$
\left(x_{n} \rightarrow \infty\right)
$$

$$
\left(\operatorname{seg} \text { is }\left(x_{1}, x_{2}, x_{1}, x_{2}, x_{1}, x_{2}, \cdots\right)\right)
$$

