Further examples (other indeterminate forms)
eg 6.3.7
(a) ($\infty-\infty$ form)

$$
\begin{array}{ll}
\lim _{x \rightarrow 0+}\left(\frac{1}{x}-\frac{1}{\sin x}\right) & \left(x \in\left(0, \frac{\pi}{2}\right)\right) \\
=\lim _{x \rightarrow 0+} \frac{\sin x-x}{x \sin x} & \text { (trausfum to } \frac{0}{0} \text { farm) } \\
=\lim _{x \rightarrow 0+} \frac{\cos x-1}{\sin x+x \cos x} & \text { (L'Hospital) } \\
=\lim _{x \rightarrow 0+} \frac{-\sin x}{2 \cos x-x \sin x} & \text { (bill } \frac{0}{0} \text { form) } \\
\text { (Losptial) }
\end{array}
$$

$$
=0
$$

(linitexists, calculation justified)
(b)

$$
\begin{aligned}
& (0 \cdot(-\infty) \text { fame } \\
& \lim _{x \rightarrow 0^{+}} x \ln x \\
= & \lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \\
= & \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}} \\
= & \lim _{x \rightarrow 0^{+}}(-x)=0
\end{aligned}
$$

$$
(x \in(0, \infty))
$$

$$
\text { (trousfans to } \frac{-\infty}{\infty} \text { fum) }
$$

(L'Hospital)
(linitexists, calculation justified)
(c) $\left(0^{0}\right.$ form $)$

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x^{x} \\
= & \lim _{x \rightarrow 0^{+}} e^{x \ln x} \\
= & \left.e^{\lim _{x \rightarrow 0^{+}} x \ln x \quad \quad \text { (frausfams to } 0 \cdot(-\infty) \text { fans which }} \begin{array}{l}
\text { can be calculated using L'Hospital as in }(b)
\end{array}\right) \\
= & e^{0}=1
\end{aligned}
$$

(d) $\left(1^{\infty}\right.$ farm $)$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \quad x \in(1, \infty) \\
= & \lim _{x \rightarrow \infty} e^{x \ln \left(1+\frac{1}{x}\right)}
\end{aligned}
$$

Troustams to the calculation of

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right) \\
= & \text { (是0 farm) } \\
=\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\frac{1}{x}} & \text { (transform to } \frac{0}{0} \text { fam) } \\
= & \lim _{x \rightarrow \infty} \frac{\left(\frac{1}{1+\frac{1}{x}}\right) \cdot\left(-\frac{1}{x^{2}}\right)}{\left(-\frac{1}{x^{2}}\right)}
\end{aligned} \quad \text { (L'Hospital) }
$$

$=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x}}=1$ (linitexists, calculation justified)
And hence $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e^{\lim _{x \rightarrow \infty} x \ln \left(1+\frac{1}{x}\right)}=e$
(e) (∞^{0} form)
$\lim _{x \rightarrow 0+}\left(1+\frac{1}{x}\right)^{x} \quad(x \in(0, \infty)) \quad$ (linit of the other end)
$=e^{\lim _{x \rightarrow 0^{+}} x \ln \left(1+\frac{1}{x}\right)} \quad$ (trausform to $0 . a$ fam
$=e^{\lim _{x \rightarrow 0^{+}} \frac{1}{1+\frac{1}{x}}} \quad$ (L'Hospital as befue)
$=e^{0}=1$
(linitexists, calculation justified)
§6.4 Taylor's Theorem

Recall: If $f(x)$ has n-th derivative at a point x_{0}, then the polynomial

$$
P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is called the n-th Taylor's Polynomial fa f at x_{0}.
Note: $\quad P_{n}^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right) \quad \forall k=0,1, \cdots, n$.

The 6.4.I (Taylor's The)
Let - $n \in \mathbb{N}($ ie. $n=1,2, \ldots)$

- $f:[a, b] \rightarrow \mathbb{R}$ such that $\quad(a<b)$
- $f^{\prime}, \cdots, f^{(n)}$ are continuous on $[a, b]$ and
- $f^{(n+1)}$ exists on (a, b).

If $x_{0} \in[a, b]$, then $\forall x \in[a, b], \exists c$ between x_{0} and x such that

$$
f(x)=P_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

where $P_{n}(x)$ is the n-th Taylor's Polynomial of f at x_{0}

Remark: $R_{n}(x)=f(x)-P_{n}(x)$ is referred as the remainder cold

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{n+1}\left(x-x_{0}\right)^{n+1}
$$

is called the Lagrange form of the remainder, or derivative form of the remainder.

Pf (of Thy 6.4.1)
Let $x_{0}, x \in[a, b]$ be given.
If $x_{0}=x$, then the formula is clear.
If $x_{0} \neq x$, we let
$J=\left[x_{0}, x\right]$ a $\left[x, x_{0}\right]$ depending an $x>x_{0}$ a $x_{0}>x$.
Then J is a closed interval \& $J \subset[a, b]$
Consider, for $t \in J$,

$$
\begin{array}{r}
F(t)=f(x)-f(t)-(x-t) f^{\prime}(t)-\frac{(x-t)^{2}}{2} f^{\prime \prime}(t)-\cdots \\
\cdots-\frac{(x-t)^{n}}{n!} f^{(n)}(t)
\end{array}
$$

Then, $F(x)=0$,

- $F\left(x_{0}\right)=f(x)-P_{n}(x)=R_{n}(x)$ is the remainder

And, by cossumption, $F(t)$ is contaunors on J, and

- $F^{\prime}(t)$ exists in the üteria of J
with

$$
\begin{aligned}
F^{\prime}(t)= & -f^{\prime}(t) \\
& +f^{\prime}(t)-(x-t) f^{\prime \prime}(t) \\
& +(x-t) f^{\prime \prime}(t)-\frac{(x-t)^{2}}{2} f^{(3)}(t) \\
& +\cdots \\
& +\frac{(x-t)^{n-1}}{(n-1)!} f^{(n)}(t)-\frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \\
= & -\frac{(x-t)^{n}}{n!} f^{(n+1)}(t)
\end{aligned}
$$

Consider further the function

$$
G(t)=F(t)-\left(\frac{x-t}{x-x_{0}}\right)^{n+1} F\left(x_{0}\right) \quad f a \quad t \in J
$$

Then G is continuous on J, differentiable in the interia of J,
and $\left\{\begin{array}{l}G\left(x_{0}\right)=F\left(x_{0}\right)-\left(\frac{x-x_{0}}{x-x_{0}}\right)^{n+1} F\left(x_{0}\right)=0 \\ \end{array}\right.$

$$
G(x)=F(x)-\left(\frac{x-x}{x-x_{0}}\right)^{n+1} F\left(x_{0}\right)=0
$$

By Rolle's Thu, $\exists c \in$ miterion of J (ie. between $x_{0} \& x$)
sit. $\quad 0=G^{\prime}(c)=F^{\prime}(c)+(n+1) \frac{(x-c)^{n}}{\left(x-x_{0}\right)^{n+1}} F\left(x_{0}\right)$

$$
\begin{align*}
\therefore \quad R_{n}(x)=F\left(x_{0}\right) & =-\frac{1}{(n+1)} \cdot \frac{\left(x-x_{0}\right)^{n+1}}{(x-c)^{n}} F^{\prime}(c) \\
& =-\frac{1}{(n+1)} \cdot \frac{\left(x-x_{0}\right)^{n+1}}{(x-c)^{n}} \cdot\left(-\frac{(x-c)^{n}}{n!} f^{(n+1)}(c)\right) \\
& =\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{(n+1)}(c)
\end{align*}
$$

Applications of Taylor's Theorem
eg 6.4.2 (Approximation of values)
(a) Use Taylor's Thu with $n=2$ to approximate $\sqrt[3]{1+x}$, near $x=0 \quad(x>-1)$.

Let $f(x)=(1+x)^{1 / 3}, \quad x_{0}=0$
For $n=2, \quad P_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}$
using $f(x)=(1+x)^{1 / 3}, f(0)=1$;

$$
\begin{aligned}
& \Rightarrow \quad f^{\prime}(x)=1 / 3(1+x)^{-2 / 3}, f^{\prime}(0)=\frac{1}{3} \\
& \Rightarrow \quad f^{\prime \prime}(x)=-\frac{2}{9}(1+x)^{-\frac{5}{3}}, f^{\prime \prime}(0)=-\frac{2}{9} \\
& \therefore \quad P_{2}(x)=1+\frac{1}{3} x-\frac{1}{9} x^{2}
\end{aligned}
$$

And Rene

$$
f(x)=P_{2}(x)+R_{2}(x)=1+\frac{1}{3} x-\frac{1}{9} x^{2}+R_{2}(x)
$$

where

$$
\begin{aligned}
R_{2}(x) & =\frac{1}{3!} f^{\prime \prime \prime}(c)\left(x-x_{0}\right)^{3}=\frac{1}{3!}\left(\frac{2 \cdot 5}{9 \cdot 3}\right)(1+c)^{-\frac{8}{3}} x^{3} \\
& =\frac{5}{8!}(1+c)^{-\frac{8}{3}} x^{3} \quad \text { fa some } c \text { between } 08 x
\end{aligned}
$$

Explicit eg: If $x=0.3$.
Then $\quad P_{2}(0.3)=1+\frac{1}{3}(0.3)-\frac{1}{9}(0.3)^{2}=1.09$

$$
\begin{aligned}
& \quad R_{2}(0.3)=\frac{5}{81} \cdot \frac{1}{(1+c)^{8 / 3}}(0.3)^{3} \\
& \Rightarrow \quad\left|R_{2}(0.3)\right| \leqslant \frac{5}{81}(0.3)^{3} \\
&=\frac{1}{600}<0.0017 \\
& \therefore \quad\left|f(0.3)-P_{2}(0.3)\right|<0.0017 \\
& \text { ie } \quad|\sqrt[3]{1.3}-1.09|<0.0017
\end{aligned}
$$

$\therefore \quad \sqrt[3]{1.3} \sim 1.09$ up to 2 decimal places.
(b) Use Taylor's Thu to approximate e with error $<10^{-5}$ (5 decimal places) (Assuming that we have defined e^{x} \& proved $\left(e^{x}\right)^{\prime}=e^{x}$, e^{x} invanoing, \& $e<3$.) Let $g(x)=e^{x}, \quad x_{0}=0$.
Then by $\left(e^{x}\right)^{\prime}=e^{x}$, we have $g^{(k)}(x)=e^{x}, \quad \forall k=1,2,3, \ldots$

Suppre that we need to use Taylor's The up to n.
Then the error is given by the remainder term

$$
R_{n}(x)=\frac{1}{(n+0!} e^{c} x^{n+1} \text { for some } c \text { between } 0 \& x \text {. }
$$

Take $x=1$, we have

$$
0<R_{n}(1) \leqslant \frac{e}{(n+1)!}<\frac{3}{(n+1)!} \quad(0<c<1)
$$

Hence, to ensure error $<10^{-5}$, we need

$$
\frac{3}{(n+1)!}<10^{-5}
$$

ie. $\quad(n+1)!>3 \cdot 10^{5}=300000$ (Should use the smallest possible n to reduce calculation)

Try: $(8+1)!=9!=362880 \quad((7+1)!=8!=40,320)$
$\therefore n=8$ is the required value and lance

$$
\begin{aligned}
e=g(1) & \approx P_{8}(1)=g(0)+g^{\prime}(0) \cdot 1+\frac{g^{\prime \prime}(0)}{2!} \cdot 1^{2}+\cdots+\frac{g^{(81}(0)}{8!} \cdot 1^{8} \\
& =1+1+\frac{1}{2!}+\cdots+\frac{1}{8!} \quad \text { wish error }<10^{-5} \\
& =2.718278 \cdots \quad \text { (use colculatos/computer) } \\
\therefore \quad e & =2.71828 \text { up to } 5 \text { decimal places }
\end{aligned}
$$

eg 6.4.3 (Applications to inequalities)
(a) $1-\frac{1}{2} x^{2} \leqslant \cos x, \quad \forall x \in \mathbb{R}$

Pf: Let $f(x)=\cos x, \quad x_{0}=0$,
Then Taylor's Thu \Rightarrow

$$
\cos x=1-\frac{1}{2} x^{2}+R_{2}(x) \quad \text { (clock!) }
$$

with $R_{2}(x)=\frac{f^{(3)}(c)}{3!} x^{3}=\frac{\sin c}{6} x^{3}$ fur some c between $08 x$.
If $0 \leqslant x \leqslant \pi$, then $0 \leqslant c<\pi$ (the case $x=0$, we have $c=0$)

$$
\Rightarrow \quad \sin c \geq 0, x^{3} \geq 0
$$

Hence $R_{2}(x) \geq 0$.

$$
\therefore \quad 1-\frac{1}{2} x^{2} \leqslant 60 x \quad \forall x \in[0, \pi]
$$

If $x \in[-\pi, 0)$, then $y=-x \in(0, \pi]$

$$
\Rightarrow \quad 1-\frac{1}{2} y^{2} \leqslant \cos y
$$

Using $\cos (-x)=60 x$, we have $1-\frac{1}{2} x^{2} \leqslant 60 x$.
Hence $\quad 1-\frac{1}{2} x^{2} \leqslant \cos x, \quad \forall x \in[-\pi, \pi]$.

If $|x|>\pi$, then $1-\frac{1}{2} x^{2}<1-\frac{1}{2} \pi^{2}<-1 \leqslant \cos x$
All together $\quad 1-\frac{1}{2} x^{2} \leq \cos x \quad \forall x \in \mathbb{R}$
(b)

$$
\begin{aligned}
& \forall k=1,2,3, \cdots \& \forall x>0 \\
& x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots-\frac{1}{2 k} x^{2 k}<\ln (1+x)<x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\cdots+\frac{1}{2 k+1} x^{2 k+1}
\end{aligned}
$$

Pf: Let $f(x)=\ln (1+x)$ for $x>-1$ (mistake in textbook)
Then $f^{\prime}(x)=\frac{1}{1+x}, f^{\prime \prime}=\frac{-1}{(1+x)^{2}}, \cdots f^{(n)}=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}$

$$
\therefore \quad f^{(n)}(0)=(-1)^{n-1}(n-1)!
$$

\Rightarrow nth Taylor's Poly of $\ln (1+X)$ at $x=0$ is

$$
\begin{aligned}
P_{n}(x) & =0+1 \cdot x-\frac{1}{2!} \cdot x^{2}+\frac{1}{3!} \cdot(2!) x^{3}-\cdots+\frac{1}{n!}(-1)^{n-1}(n-1)!x^{n} \\
& =x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3} \cdots+\frac{(-1)^{n-1}}{n} x^{n}
\end{aligned}
$$

and Remainder is
(mistake in Textbook)

If $x>0$, then $c>0$, and hance $1+c>1$

$$
\Rightarrow \quad R_{n}(x)=\frac{(-1)^{n}}{(n+1)} \cdot\left(\frac{x}{1+C}\right)^{n+1} \begin{cases}>0 & \text { if } n \text { even } \\ <0 & \text { if } n \text { old }\end{cases}
$$

$\therefore F w n=2 k, \quad \ln (1+x)=P_{2 k}(x)+R_{2 k}(x)>P_{2 k}(x)$
ie. $\ln (1+x)>x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots-\frac{x^{2 k}}{2 k} \quad(\forall x>0)$
\therefore Fr $n=2 k+1 \quad \ln (1+x)=P_{2 k+1}(x)+R_{2 k+1}(x)<P_{2 k+1}(x)$ ie $\ln (1+x)<x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \cdots+\frac{x^{2 k+1}}{2 k+1} \quad(\forall x>0)$
(c) $e^{\pi}>\pi^{e}$
$\underline{P f}:$ Taylor's The

$$
\Rightarrow e^{x}=1+x+R_{1}(x) \quad(\text { see eg 6.4.2) }
$$

with $R_{1}(x)=\frac{e^{c}}{2!} x^{2}>0$ for some c between $0 \& x$.
(using the fact that $e^{c}>0, \forall c \in \mathbb{R}$)

$$
\therefore \quad e^{x}>1+x, \forall x \neq 0
$$

Put $x=\frac{\pi}{e}-1>0$ (using known approx, values of $\pi \& e$) into et, we have

$$
\begin{aligned}
& e^{\left(\frac{\pi}{e}-1\right)}>1+\frac{\pi}{e}-1=\frac{\pi}{e} \\
\Rightarrow & e^{\frac{\pi}{e}}>\pi \\
\Rightarrow & \quad e^{\pi}>\pi^{e}
\end{aligned}
$$

Application to Relative Extrema (Higher Derivative Test)
The 6.4.4 Let, $f: I \rightarrow \mathbb{R}$, ($I=$ interval)

- X_{0} be an interior point of I
- $f^{\prime}, f^{\prime \prime}, \cdots, f^{(n)}$ exist and contūucons in a nd of x_{0}.
- $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0, f^{(n)}\left(x_{0}\right) \neq 0$

Then
(i) n even \& $f^{(n)}\left(x_{0}\right)>0 \Rightarrow f$ has a relative niminum at x_{0}
(ii) n even \& $f^{(n)}\left(x_{0}\right)<0 \Longrightarrow f$ has a relative maxinumen at x_{0}
(iii) n odd $\Longrightarrow f$ has neither a relative nimimum
no a relative maximum at x_{0}
Remark: If $n=2$, it is the $2^{\text {nd }}$ Derivative Test.

Pf: If $f^{(n)}\left(x_{0}\right) \neq 0$ and $f^{(n)}$ catiunons, then $\exists \operatorname{nbd} U=\left(x_{0}-\delta, x_{0}+\delta\right) \subset I$ of x_{0} such that

$$
\operatorname{sgn}\left(f^{(n)}(x)\right)=\operatorname{sgn}\left(f^{(n)}\left(x_{0}\right)\right), \quad \forall x \in U,-(*)
$$

Now, using $f^{\prime}\left(x_{0}\right)=\cdots=f^{(n-1)}\left(x_{0}\right)=0$,
the Taylor's Thu \Rightarrow

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+\cdots+\frac{f^{(n-1)}\left(x_{0}\right)}{(n-1)!}\left(x-x_{0}\right)^{n-1}+\frac{f^{(n)}(c)}{n!}\left(x-x_{0}\right)^{n} \\
& =f\left(x_{0}\right)+\frac{f^{(n)}(c)}{n!}\left(x-x_{0}\right)^{n}, \quad \text { for some } c \text { between } x_{0} \& x .
\end{aligned}
$$

Case (i) never, $f^{(n)}\left(x_{0}\right)>0$.
By (*) \& Taylor's, $\forall x \in U$
Since $\left\{\begin{array}{l}n \text { even } \Rightarrow\left(x-x_{0}\right)^{n} \geq 0 \quad \forall x \in U \\ f^{(n)}\left(x_{0}\right)>0 \Rightarrow f^{n}(c)>0, \quad(x \in U \Rightarrow c \in U),\end{array}\right.$

$$
f(x)-f\left(x_{0}\right)=\frac{f^{(n)}(c)}{n!}\left(x-x_{0}\right)^{n} \geqslant 0
$$

$\therefore f$ has a relative nuininum at x_{0}.

Case (ii) n even, $f^{(n)}\left(x_{0}\right)<0$.
By (*) \& Taylor's, $\forall x \in U$
Shine

$$
\begin{aligned}
& \text { ce }\left\{\begin{array}{l}
n \text { even } \Rightarrow\left(x-x_{0}\right)^{n} \geq 0 \quad \forall x \in U \\
f^{(n)}\left(x_{0}\right)<0 \Rightarrow f^{(n)}(c)<0, \quad(x \in U \Rightarrow c \in U)
\end{array}\right. \\
& f(x)-f\left(x_{0}\right)=\frac{f^{(n)}(c)}{n!}\left(x-x_{0}\right)^{n} \leqslant 0
\end{aligned}
$$

$\therefore f$ has a relative maximum at x_{0}.

Case (iii) n odd
Taylor's Thu $\Rightarrow \forall x \in U$
Since $\left\{\begin{array}{l}n \text { odd } \Rightarrow\left(x-x_{0}\right)^{n} \text { changes sign } \\ f^{(n)}\left(x_{0}\right) \neq 0 \Rightarrow f^{n}(c) \text { has fixed sign }(x \in U \Rightarrow c \in U) \text {, }\end{array}\right.$

$$
f(x)-f\left(x_{0}\right)=\frac{f^{(n)}(c)}{n!}\left(x-x_{0}\right)^{n} \text { changes sign }
$$

\therefore Not maximum and abs Not nuininum.

Application to Convex Functions

Def 6.4.5 Let I be an interval.
A function $f=I \rightarrow \mathbb{R}$ is said to be convex on I if $\forall t \in[0,1]$ and any $x_{1}, x_{2} \in I$, we have

$$
f\left((1-t) x_{1}+t x_{2}\right) \leqslant(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right)
$$

Geometric meaning:
Graph always below (at most up to) chord (with same end pts)

Pf \Leftrightarrow (Ex 16 of $\$ 6.4$ to be assigned in hmewnte 3)

$$
f^{\prime \prime}(x) \text { exists } \Rightarrow f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Now, f convex on $I \Rightarrow$
$\forall x \in I$ and $h \in \mathbb{R}$ such that $x \pm h \in I$, we have

$$
f\left(\frac{1}{2}(x+h)+\frac{1}{2}(x-h)\right) \leqslant \frac{1}{2} f(x+h)+\frac{1}{2} f(x-h)
$$

ie. $\quad 2 f(x) \leqslant f(x+h)+f(x-h)$

Therefae $\quad \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \geq 0$

$$
\Rightarrow \quad f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \geq 0, \quad \forall x \in I .
$$

(To be cout'd)

