§6.3 L'Hospital's Rule
Recall: If $\lim _{x \rightarrow c} f(x)=A$

$$
\lim _{x \rightarrow c} g(x)=B \neq 0
$$

then $\lim _{x \rightarrow C} \frac{f(x)}{g(x)}=\frac{A}{B}$.

Question: What can we say about the case that $B=0$?
(1) If $A \neq 0$, then $\left.\lim _{x \rightarrow C} \frac{f(x)}{g(x)}=\infty \quad \begin{array}{c}(\pm \text { depends on } \operatorname{sgn}(A) \\ \& \operatorname{sgn}(g(x) \text { near } x=c\end{array}\right)$
(including jownering frau $\pm \infty$, ie. not exist,,$x \rightarrow c \left\lvert\,\left(\left.\frac{f(x)}{g(x)} \right\rvert\,=\infty\right)\right.$
(2) Indeterminate if $A=0$:
eg.

$$
\left\{\begin{array}{l}
f(x)=L x^{2}, g(x)=x^{2}: \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=L \quad(\text { finite }, L \neq 0) \\
f(x)=x^{3}, g(x)=x^{2}: \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0 \\
f(x)=x^{2}, g(x)=x^{4}: \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\infty
\end{array}\right.
$$

Symbol for this indeterminate fam: $\%$

Other indeterminate farms:

$$
\infty / \infty, \quad 0 \cdot \infty, 0^{0}, 1^{\infty}, \infty^{0}, \quad \infty-\infty
$$

eg: 0^{0} denotes indeterminate farm of $\lim _{x \rightarrow c} f(x)^{g(x)}$
with $\lim _{x \rightarrow c} f(x)=0=\lim _{x \rightarrow c} g(x)$.
and $\infty-\infty$ denotes indeterminate farm of $\lim _{x \rightarrow c}(f(x)-g(x))$

$$
\begin{gathered}
\text { with } \lim _{x \rightarrow c} f(x)=+\infty=\lim _{x \rightarrow c} g(x) . \\
(a-\infty)
\end{gathered}
$$

Vote: Indeterminate fam $0 . \infty, 0^{0}, 1^{\infty}, \infty^{0} \& \infty-\infty$ can be reduced to the fam $\%$ a ∞ / ∞ by taking \log, exp, a algebraic manipulations.
eg. $\infty-\infty \quad \lim _{x \rightarrow c}(f(x)-g(x))$ with $\left\{\begin{array}{l}\lim _{x \rightarrow c} f(x)=-\infty \\ \lim _{x \rightarrow c} g(x)=-\infty\end{array}\right.$

$$
\begin{aligned}
& =\lim _{x \rightarrow c} \log e^{f(x)-G(x)} \\
& =\lim _{x \rightarrow c} \log \frac{e^{f(x)}}{e^{g(x)}}
\end{aligned}
$$

and one can consider $\lim _{x \rightarrow c} \frac{e^{f(x)}}{e^{g(x)}}$ which is of the $\operatorname{tam} \%$.
$1^{\text {st }}$ Result
Thm 6.3.1 Let $f, g=[a, b] \rightarrow \mathbb{R}(a<b)$

- $f(a)=g(a)=0$
- $g(x) \neq 0 \quad \forall x \in(a, b)$

If f and g are differentiable at a (1-sided) with $g^{\prime}(a) \neq 0$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists and

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}
$$

Remarks:
(1) $f(a)=g(a)=0$ is necessary!
counterexauple: $\quad f(x)=x+17, g(x)=2 x+3$ on $[0,1]$.
Then $f(0)=17 \neq 0, g(0)=3 \neq 0$. (the patitular caclifion: not satified)

$$
f^{\prime}(0)=1, g^{\prime}(0)=2 \neq 0 \quad \text { (other condititas: sateified) }
$$

And $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{17}{3} \neq \frac{1}{2}=\frac{f^{\prime}(0)}{g^{\prime}(0)}$.
(2) No need to assulue differantiability (a evear cantincity) in (a, b).
(3) The Thu holds for the other end point b wish

$$
\lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=\frac{f^{\prime}(b)}{g^{\prime}(b)} \text { provided }\left\{\begin{array}{l}
f^{\prime}(b) \& g^{\prime}(b) \text { exist }(1 \text {-sided) } \\
f(b)=g(b)=0 \& \quad g^{\prime}(b) \neq 0 ;
\end{array}\right.
$$

and abs interior point $c \in(a, b)$ with

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f^{\prime}(c)}{g^{\prime}(c)} \text { provided } \quad\left\{\begin{array}{l}
f^{\prime}(c) \& g^{\prime}(c) \text { exist } \\
f(c)=g(c)=0,
\end{array}\right.
$$

Pf: By $f(a)=g(a)=0, \& g(x) \neq 0 \quad \forall x \in(a, b)$

$$
\begin{aligned}
& \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\left(\frac{f(x)-f(a)}{x-a}\right) /\left(\frac{g(x)-g(a)}{x-a}\right), \forall x \in(a, b) \\
\therefore & \lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)} \quad \text { os } \quad f^{\prime}(a)=\lim _{x \rightarrow a+} \frac{f(x)-f(a)}{x-a} ; \\
& g^{\prime}(a)=\lim _{x \rightarrow a+} \frac{g(x)-g(a)}{x-a} \neq 0
\end{aligned}
$$

eg: Thu 6.3.1 can be applied os follow (interim point):

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x}{\sin 2 x}=\frac{\left.\frac{d}{d x}\left(x^{2}+x\right)\right|_{x=0}}{\left.\frac{d}{d x} \sin 2 x\right|_{x=0}}=\frac{1}{2} .
$$

Far further vesults, we need

Thu 6.3.2 (Cauchy Mean Value Thenem)
Let - $f, g:[a, b] \rightarrow \mathbb{R}$ continuous $\quad(a<b)$

- f, g differentiable on (a, b)
- $g^{\prime}(x) \neq 0, \quad \forall x \in(a, b)$

Then $\exists c \in(a, b)$ sit. $\quad \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

Remarks: (I) One may tempted to think of the following wrong proof:

$$
\begin{array}{r}
\text { MUT } \Rightarrow \exists c \text { sit. } \quad f(b)-f(a)=f^{\prime}(c)(b-a) \\
\\
\text { and } g(b)-g(a)=g^{\prime}(c)(b-a)
\end{array}
$$

Hence $\quad \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$
The mistake is that the "c" given by the MVT depends on the functions $f \& g$. Careful notations should be

$$
\begin{aligned}
& \exists c_{f} \text { sit. } f(b)-f(a)=f^{\prime}\left(c_{f}\right)(b-a) \\
& \exists c_{g} \text { sit. } g(b)-g(a)=g^{\prime}\left(c_{g}\right)(b-a) .
\end{aligned}
$$

But C_{f} may not equal C_{g}.
(2) Geomethic citerpretation

(3) Clearly, if $g(x)=x$, Caucly MVT reduces to MVT.

Pf (of Cancky MVT).
Since $g^{\prime}(x) \neq 0, \forall x \in(a, b)$, we have $g(b) \neq g(a)$. Otherwise the function $g(x)-g(a)$ satifies $\left\{\begin{array}{l}g(b)-g(a)=0 \\ g(a)-g(a)=0\end{array}\right.$ and Rolle's Thun $\Rightarrow \exists c \in(a, b)$ s.t. $g^{\prime}(c)=\left.(g(x)-g(a))^{\prime}\right|_{x=c}=0$ Hence we can defūe contradiction.

$$
h(x)=\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))-(f(x)-f(a)), \forall x \in[a, b] .
$$

Clarty, h is continuenco on $[a, b]$ \& differentiable on (a, b) (by the assumption on $f \& g$). Macover,

$$
h(b)=\frac{f(b)-f(a)}{g(b)-g(a)}(g(b)-g(a))-(f(b)-f(a))=0 \quad \text { and }
$$

$$
h(a)=\frac{f(b)-f(a)}{g(b)-g(a)}(g(a)-g(a))-(f(a)-f(a))=0
$$

\therefore Roble's Thu \Rightarrow च $c \in(a, b)$ sit.

$$
0=h^{\prime}(c)=\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(c)-f^{\prime}(c)
$$

Since $g^{\prime}(c) \neq 0$, we have $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

L'Hospital's Rule I
Remarks:
(1) No need to assume $f^{\prime}(a), g^{\prime}(a)$ exist as in Thy 6.3.1 but need differentiability in (a, b)
(2) The 6.3.3 (\& Thu 6.3.5) states only the case of taking limit as - $x \rightarrow a+$ (right hand limit) for "convenience".

In fact, it is true also fo

- $x \rightarrow b^{-}$(left hand limit)
- $x \rightarrow c \quad($ two -sided limit, $c \in(a, b))$
- $\quad x \rightarrow \pm \infty$

The 6.3.3 ('Hospital's Rule I)
Let - $-\infty \leqslant a<b \leqslant \infty$

- f, g differentiable on (a, b) (no cssesuption at end pts.)
- $g^{\prime}(x) \neq 0, \quad \forall x \in(a, b)$
- $\lim _{x \rightarrow a^{+}} f(x)=0=\lim _{x \rightarrow a^{+}} g(x)$
(a) If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$
(b) If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in\{-\infty, \infty\}$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$

Pf: For any α, β such that $a<\alpha<\beta<b$,
Rolle's supplies $g(\beta) \neq g(\alpha)$ since $g^{\prime}(x) \neq 0 \quad \forall x \in(a, b)$.
Further mene, Cauchy Mean Value Thu
$\Rightarrow \exists u \in(\alpha, \beta)$ such that

$$
\begin{equation*}
\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)}=\frac{f^{\prime}(u)}{g^{\prime}(u)} \tag{*}
\end{equation*}
$$

Care (a) $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$
1 -sided luis

$$
\Rightarrow \forall \varepsilon>0, \exists \delta>0 \text { s.t. }\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\varepsilon, \quad \forall x \in(a, a+\delta) \quad(a+\delta<b)
$$

If $a<\alpha<\beta<a+\delta$, then the u in (*) satisfies

$$
a<u<a+\delta
$$

Hence $\quad L-\varepsilon<\frac{f^{\prime}(u)}{g^{\prime}(u)}<L+\varepsilon$

$$
\Rightarrow \quad L-\varepsilon<\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)}<L+\varepsilon \quad(\text { by }(*))
$$

Letting $\alpha \rightarrow$ at and using $\lim _{x \rightarrow a^{+}} f(x)=0=\lim _{x \rightarrow a^{+}} g(x)$,
we have $\forall \beta$ with $a<\beta<a+\delta$,

$$
L-\varepsilon \leqslant \frac{f(\beta)}{g(\beta)} \leqslant L+\varepsilon
$$

Now, $\forall \varepsilon^{\prime}>0$, we can choose $\varepsilon>0$ sit. $\varepsilon<\varepsilon^{\prime}$.
Then $\quad\left|\frac{f(\beta)}{g(\beta)}-L\right| \leqslant \varepsilon<\varepsilon^{\prime}, \quad \forall \beta \in(a, a+\delta)$.

In other words, $\forall \varepsilon^{\prime}>0, \exists \delta>0$ sit.

$$
\begin{aligned}
& \quad\left|\frac{f(\beta)}{g(\beta)}-L\right|<\varepsilon^{\prime}, \forall \beta \in(a, a+\delta) \\
& \therefore \quad \lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L .
\end{aligned}
$$

$\operatorname{Cave}(b) \lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L, L= \pm \infty$.
If $L=+\infty$, then $\forall M>0, \exists \delta>0$ such that

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}>M, \forall x \in(a, a+\delta)
$$

Hence far $a<\alpha<u<\beta<a+\delta$,

$$
M<\frac{f^{\prime}(u)}{g^{\prime}(u)}=\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)}
$$

Letting $\alpha \rightarrow a^{+}$\& using $\lim _{x \rightarrow a^{+}} f(x)=0=\lim _{x \rightarrow a^{+}} g(x)$, we have $M \leqslant \frac{f(\beta)}{g(\beta)}, \forall a<\beta<a+\delta$.
Since $M>0$ is arbitrary, we have $\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=+\infty=L$.
Similarly fer $L=-\infty$ (Check!)

Notes: (1) The cases of $\lim _{x \rightarrow \pm \infty}$ are infract included in $x \rightarrow a^{+} \& x \rightarrow b^{-}$.
(2) The case of $\lim _{x \rightarrow b^{-}}$can be proved similarly.
(3) Then, follow inverdiately, the carse of $\lim _{x \rightarrow c}$.
(In this case, only need to assume $g^{\prime}(x) \neq 0$ far $x \neq c, x \in(a, b)$) see eg (b) in eg 6.3.4
eg 6.3.4
(a) $\lim _{x \rightarrow 0+} \frac{\sin x}{\sqrt{x}} \quad$ (note \sqrt{x} is not differentiable at $x=0$)
$=0 \quad$ (linitexists, calculation justified)
(b) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}$?

* indeterminate again

However, $f(x)=\sin x$ diff. \& $f^{\prime}(x)=00 x$

$$
g(x)=2 x \quad \text { diff. \& } g^{\prime}(x)=2 \neq 0 \quad \forall x \in \mathbb{R}
$$

L'Hospital's Rule I (even the easier Thu 6.3.1) \Rightarrow

$$
\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2} \text { has a limit. }
$$

Hence L'Hospital's Rule I again \Rightarrow

$$
\lim _{x \rightarrow 0+} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0+} \frac{\sin x}{2 x}
$$

Since $(1-\cos x)^{\prime}=\sin x$ exists \& $\left(x^{2}\right)^{\prime}=2 x \neq 0, \forall x>0$

And $\quad \lim _{x \rightarrow 0^{-}} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0-} \frac{\sin x}{2 x}$
Since $\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2}$ exists, the 21 -sided limits equal and hance $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2}$
(C) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=\lim _{x \rightarrow 0} \frac{e^{x}}{1}=1$. (clock conditions!)

As in (b), Hies existence of limit implies

$$
\lim _{x \rightarrow 0}\left(\frac{e^{x}-1-x}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}=1 \quad \text { (chock conditims!.) }
$$

(d)

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\ln x}{x-1} \quad \\
&=\lim _{x \rightarrow 1} \frac{1 / x}{1} \quad\left(\begin{array}{ll}
(\ln x)^{\prime}=\frac{1}{x} & \text { exisists fur } \quad \\
(x-1)^{\prime}=1 & \text { exits } \neq 0, \forall x>0 \\
(x>0
\end{array}\right)
\end{aligned}
$$

$=1$ (linitexists, calculation justified)

The 6.3.5 ('Hospital's Rule II)
Let - $-\infty \leqslant a<b \leqslant \infty$

- f, g differentiable on (a, b) (NO assumption at end pts.)
- $g^{\prime}(x) \neq 0, \quad \forall x \in(a, b)$
- $\lim _{x \rightarrow a^{+}} g(x)= \pm \infty$
(a) If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in \mathbb{R}$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$
(b) If $\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \in\{-\infty, \infty\}$, then $\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=L$

Pf: Only for " $\lim _{x \rightarrow a^{+}} g(x)=+\infty$ ".
$" \lim _{x \rightarrow a^{+}} g(x)=-\infty$ " is similar.

As befne, $\forall \alpha, \beta \in(a, b)$ with $a<\alpha<\beta<b$, we have

- $g(\beta) \neq g(\alpha)$ and
- $\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)}=\frac{f^{\prime}(u)}{g^{\prime}(u)}$ fa some $u \in(\alpha, \beta)$

Case (a) : $L \in \mathbb{R}$.
subcase $L>0$
By $\lim _{x \rightarrow a+} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L, \quad \forall \varepsilon>0 \quad\left(\varepsilon<\frac{L}{2}\right), \quad \exists \delta>0$ such that

$$
\begin{aligned}
& 0<L-\varepsilon<\frac{f^{\prime}(u)}{g^{\prime}(u)}<L+\varepsilon, \quad \forall u \in(a, a+\delta) \quad(\& a+\delta<b) \\
\Rightarrow & L-\varepsilon<\frac{f(\beta)-f(\alpha)}{g(\beta)-g(\alpha)}<L+\varepsilon, \quad \forall a<\alpha<\beta<a+\delta .
\end{aligned}
$$

As $\lim _{x \rightarrow a+} g(x)=+\infty, \exists c \in(a, a+\delta)$ such that

$$
g(x)>0, \quad \forall x \in(a, c) \quad(c(a, a+\sqrt{ }))
$$

Then far any $a<\alpha<c$, we have

$$
L-\varepsilon<\frac{f(c)-f(\alpha)}{g(c)-g(\alpha)}<L+\varepsilon \quad(\text { by taking } \beta=c)
$$

Using again $\lim _{x \rightarrow a+} g(x)=+\infty$, we have

$$
\lim _{\alpha \rightarrow a^{+}} \frac{g(c)}{g(\alpha)}=0
$$

Therefor, $\exists 0<C_{1}<C$ such that

$$
0<\frac{g(c)}{g(\alpha)}<1, \quad \forall \alpha \in\left(a, c_{1}\right) \quad(c(a, c))
$$

(Both $g(\alpha) \& g(c)>0$ fran above) $\binom{$ Mistake in }{ Textbook }

$$
\therefore \quad \frac{g(\alpha)-g(c)}{g(\alpha)}=1-\frac{g(c)}{g(\alpha)}>0, \quad \forall \alpha \in\left(a, c_{1}\right)
$$

Therefue $\quad L-\varepsilon<\frac{f(c)-f(\alpha)}{g(c)-g(\alpha)}<L+\varepsilon$,

$$
\begin{aligned}
& \Rightarrow \\
& (L-\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)<\frac{f(c)-f(\alpha)}{g(c)-g(\alpha)} \cdot\left(1-\frac{g(c)}{g(\alpha)}\right)<(L+\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)
\end{aligned}
$$

ie. $(L-\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)<\frac{f(\alpha)}{g(\alpha)}-\frac{f(c)}{g(\alpha)}<(L+\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)$,

$$
\forall \alpha \in\left(a, c_{1}\right)
$$

which is

$$
(L-\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<(L+\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}, \quad \forall \alpha \in(a,(1)
$$

Using $\lim _{x \rightarrow a+} g(x)=+\infty$ again, $\exists c_{2} \in\left(a, c_{1}\right)$ such that

$$
0<\frac{g(c)}{g(\alpha)}<\eta \quad \text { and } \quad 0<\frac{|f(c)|}{g(\alpha)}<\eta, \forall \alpha \in\left(a, c_{2}\right)
$$

where $\eta=\min \left\{1, \varepsilon, \frac{\varepsilon}{L+1}\right\}>0$.

Then $\frac{f(\alpha)}{g(\alpha)}<(L+\varepsilon)+\eta<L+2 \varepsilon$
and $\frac{f(\alpha)}{g(\alpha)}>(L-\varepsilon)(1-\eta)-\eta \quad(\sin \varphi \quad L+\varepsilon>L-\varepsilon>0)$

$$
\begin{aligned}
& =(L-\varepsilon)-[(L-\varepsilon)+1] \eta \\
& \geqslant(L-\varepsilon)-(L+1-\varepsilon) \cdot \frac{\varepsilon}{L+1} \quad\left(\eta \leqslant \frac{\varepsilon}{L+1}\right) \\
& =L-\varepsilon-\varepsilon+\frac{\varepsilon^{2}}{L+1} \\
& >L-2 \varepsilon
\end{aligned}
$$

We've proved that, $\forall 2 \varepsilon>0$ (equi. to $\forall \varepsilon>0) \quad(z \varepsilon<L)$ $\exists C_{2} \in\left(a, c_{1}\right)$ such that

$$
\begin{array}{ll}
& L-2 \varepsilon<\frac{f(\alpha)}{g(\alpha)}<L+2 \varepsilon, \\
\therefore & \lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=L . \\
& \left(c_{2} \text { can be uxitten as } a+\delta\right)
\end{array}
$$

The proof of the subcases that $L=0$ and $L<0$ are similar (with careful consideration of "sign" in the inequalities!)

Or, by taking $\alpha \rightarrow a^{+}$in (with $\lim _{\alpha \rightarrow a^{+}} g(\alpha)=+\infty$)

$$
(L-\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<(L+\varepsilon)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}
$$

we have $\quad L-\varepsilon \leqslant \operatorname{limin}_{\alpha \rightarrow a^{+}} \frac{f(\alpha)}{g(\alpha)} \leqslant \lim _{\alpha \rightarrow a^{+}} \frac{f(\alpha)}{g(\alpha)} \leqslant L+\varepsilon$
Since $\varepsilon>0\left(\varepsilon<\frac{L}{2}\right)$ is anibitrary, we have

$$
L \leqslant \liminf _{\alpha \rightarrow a^{+}} \frac{f(\alpha)}{g(\alpha)} \leqslant \lim _{\alpha \rightarrow a^{+}} \frac{f(\alpha)}{g(\alpha)} \leqslant L
$$

$\Rightarrow \quad \lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists and equal L
(Pf of (b): next lecture)

