§ 6.3 <u>L'Hospital's Rule</u> <u>Recall</u>: If $\lim_{x \to c} f(x) = A$ $\lim_{x \to c} g(x) = B \neq 0$, Huen $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{A}{B}$,

Question: What can we say about the case that B=0?

(1) If A = 0, then
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \infty$$
 $(\pm \text{ depends on syn}(A))$
 $x = \operatorname{sgn}(gw) \text{ wear } x = c$
 $(\operatorname{including jumping from \pm co})$
 $i.e. not exist, \lim_{x \to c} |\frac{f(x)}{g(x)}| = c_0$

(2) Indeterminate if
$$A=0$$
:
eg. $f(x)=Lx^{2}$, $g(x)=x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = L$ (finite, $L=0$)
 $f(x)=x^{3}$, $g(x)=x^{2}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = 0$
 $f(x)=x^{2}$, $g(x)=x^{4}$: $\lim_{X \to 0} \frac{f(x)}{g(x)} = \infty$
Symbol for this indeterminate form : %
Other indeterminate forms:
 $\frac{\alpha}{\infty}$, $0.\infty$, 0° , 1° , ∞° , $\omega = \infty$

eg: 0° denotes indeterminate form of him fix)^{9(x)}
with
$$\lim_{x \to c} f(x) = 0 = \lim_{x \to c} g(x)$$
.
and $\infty - \infty$ denotes indeterminate form of $\lim_{x \to c} (f(x) - g(x))$
with $\lim_{x \to c} f(x) = +\infty = \lim_{x \to c} g(x)$.
 $(\alpha - \infty)$
Note: Indeterminate forms $0.\infty, 0^{\circ}, 1^{\circ}, \infty^{\circ} \approx \infty - \infty$
can be reduced to the form $\frac{1}{2} \cos \frac{1}{2} \cos$

$$\underbrace{g}_{X\to C} (f(x) - g(x)) \quad \text{with} \begin{cases} \lim_{X\to C} f(x) = -\infty \\ \lim_{X\to C} g(x) = -\infty \end{cases}$$

$$= \lim_{X \to C} \log C$$

$$= \lim_{X \to C} \log \frac{e^{f(X)}}{e^{g(X)}}$$

and one can consider $\lim_{X\to\infty} \frac{e^{f(X)}}{e^{g(X)}}$ which is of the form %.

Thm 6.3.1 let
$$fg:(a,b] \rightarrow \mathbb{R} (a < b)$$

 $f(a) = g(a) = 0$
 $g(x) \neq 0 \quad \forall x \in (a,b)$
If f and g are differentiable at a (1-sided) with
 $g'(a) \neq 0$, then $\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)}$ exists and
 $\lim_{x \rightarrow a^{+}} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$

Remarks:

(1)
$$f(a) = g(a) = 0$$
 is necessary !
(ounterexample: $f(x) = x + i7$, $g(x) = zx + 3$ on $[0, 1]$.
Then $f(o) = i7 \neq 0$, $g(o) = 3 \neq 0$. (The particular (and iftian: not satisfied)
 $f'(o) = 1$, $g'(o) = 2 \neq 0$ (Other (and it is: satisfied))
And $\lim_{X \to 0} \frac{f(x)}{g(x)} = \frac{i7}{3} \neq \frac{1}{2} = \frac{f(o)}{g'(o)}$.

(2) No read to assume differentiability (a even continuity) in (0,5).

(3) The Thin tolds for the other end point b with

$$\begin{aligned}
\lim_{X \to b^{-}} \frac{f(x)}{g(x)} &= \frac{f'(b)}{g'(b)} \quad \text{provided} \quad \begin{cases} f'(b) &\neq g'(b) & \text{oxist} & (1-sided) \\ g(b) &= g(b) = 0 & e & g'(b) \neq 0 \end{cases},\\
\text{and also interior point } C \in (a, b) & \text{with} \\
\lim_{X \to c} \frac{f(x)}{g(x)} &= \frac{f'(c)}{g'(c)} \quad \text{provided} \quad \begin{cases} f'(c) &\neq g'(c) & exist & e & g'(c) \neq 0 \\ f(c) &= g(c) = 0 \\ f(c) &= g(c) = 0 \\ \end{cases},\\
\end{aligned}$$

$$\begin{aligned}
\text{Pf: By } f(a) = g(a) = 0, \quad e \quad g(x) \neq 0 \quad \forall x \in (a, b) \\
&= \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{(f(x) - f(a))}{x - a} / (\frac{g(x) - g(a)}{x - a}), \quad \forall x \in (a, b)
\end{aligned}$$

$$:: \lim_{X \to a^+} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)} \quad \text{as} \quad \begin{array}{l} f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}; \\ g'(a) = \lim_{X \to a^+} \frac{g(x) - g(a)}{x - a} \neq 0 \end{array}$$

Qg: Thur 6.3.1 can be applied as follow (interior point):

$$\lim_{X \to 0} \frac{X^2 + X}{\text{sun} Z X} = \frac{\frac{d}{dx} (X^2 + X)/_{X=0}}{\frac{d}{dx} \text{sun} Z X/_{X=0}} = \frac{1}{2}$$

For further results, we need

$$Thm 6.3.2 (Cauchy Mean Value Therem)$$
Let • $f,g: (a,b] \rightarrow \mathbb{R}$ cartinuous (a,b)
• f,g differentiable on (a,b)
• $g'(x) \neq 0$, $\forall x \in (a,b)$
Then $\exists c \in (a,b)$ s.t. $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$.

Remarks: (1) Our may tempted to think of the following wrong proof:

$$MVT \Rightarrow \exists c st. f(b) - f(a) = f(c)(b-a)$$

 $aud g(b) - g(a) = g(c)(b-a)$
 $I \neq uce \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(c)}{g(c)}$
The miotake is that the "c" given by the MVT depends
on the functions $f \in g$. Careful notations should be
 $\exists c_s s.t. f(b) - f(a) = f(c_s)(b-a) = g(c_s)(b-a)$
 $\exists c_g s.t. g(b) - g(a) = g(c_g)(b-a).$
But C_s may not equal C_g .

(3) Clearly, if gixs=x, Cauchy MVT reduces to MVT.

$$Pf(of(auchy MVT)).$$
Since $g'(x) \neq 0$, $\forall x \in (a,b)$, we have $g(b) \neq g(a)$.
Otherwise the function $g(x) - g(a)$ satisfies $i \frac{g(b) - g(a) = 0}{g(a) - g(a) = 0}$
and Rolle's Thus $\Rightarrow \exists c \in (a,b) \text{ s.t. } g'(c) = (g(x) - g(a))'/_{x=c} = 0$
Hence we can define

$$f_{n}(x) = \frac{f(b) - f(a)}{g(b) - g(a)} \left(g(x) - g(a) \right) - \left(f(x) - f(a) \right), \forall x \in [a, b]$$

(learly, h is continuous on [a,b] & differentiable on (a,b) (by the assumption on f & g). Moreover, $h(b) = \frac{f(b) - f(a)}{g(b) - g(a)} (g(b) - g(a)) - (f(b) - f(a)) = 0$ and

$$\Re(a) = \frac{f(b) - f(a)}{g(b) - g(a)} \left(g(a) - g(a) \right) - \left(f(a) - f(a) \right) = 0$$

.: Rolle's Thm => ICE(Q,b) st.

$$0 = f_{1}(c) = \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) - f'(c)$$

Since $g'(c) \neq 0$, we have $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f(c)}{g'(c)}$

Thm 6.33 (L'Hospital's Rule I)
Let
$$-\omega \le a < b \le \infty$$

 $\cdot \quad f, g \quad differentiable \quad on (a,b) (wo assumption at end pts.)$
 $\cdot \quad g'(x) = 0, \forall x \in (a,b)$
 $\cdot \quad lim_{x \to a^{+}} f(x) = 0 = lim_{x \to a^{+}} g(x)$
(a) If $\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
(b) If $\lim_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \{-\infty,\infty\}$, then $\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
Ef: For any d, β such that $a < d < \beta < b$,
Rolle's unplies $g(\beta) \neq g(d)$ since $g(x) \neq 0 \quad \forall x \in (a,b)$.
Further were, Cauchy Mean Value Then
 $\Rightarrow \exists u \in (a, \beta)$ such that

$$\frac{f(p) - f(u)}{g(p) - g(u)} = \frac{f'(u)}{g'(u)} .$$
 (*)

If
$$a < x < \beta < a + \delta$$
, then the u in (t) satisfies
 $a < u < a + \delta$.

$$|fence L - \varepsilon < \frac{f(u)}{g'(u)} < L + \varepsilon$$

$$\Rightarrow \qquad L-\varepsilon < \frac{f(\beta)-f(\kappa)}{g(\beta)-g(\kappa)} < L+\varepsilon \qquad (by (*))$$

Letting
$$d \Rightarrow at$$
 and using $\lim_{X \Rightarrow at} f(x) = 0 = \lim_{X \Rightarrow at} g(x)$,
we have $\forall \beta$ with $a < \beta < a + \delta$,
 $L - \xi \leq \frac{f(\beta)}{g(\beta)} \leq L + \xi$

Now, $\forall \epsilon' > 0$, we can choose $\epsilon > 0$ s.t. $\epsilon < \epsilon'$. Then $\left| \frac{f(\beta)}{g(\beta)} - L \right| \le \epsilon < \epsilon'$, $\forall \beta \in (a, a + \delta)$.

In other words, VE>0, JJ>0 S.t. $\left|\frac{f(\beta)}{q(\beta)} - L\right| < \varepsilon', \forall \beta \in (a, a+\delta).$ $\lim_{x \to 0^+} \frac{f(x)}{q(x)} = L,$ Call (b) $\lim_{x \to at} \frac{f'(x)}{q'(x)} = L \downarrow L = \pm \infty$. If L=to, then VM>0, J J>0 such that $\frac{f(x)}{q(x)} > M, \quad \forall x \in (a, a+\delta).$ Hence for a < d < u < B < a + J, $M < \frac{f(u)}{g'(u)} = \frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} .$ Letting $d \rightarrow a^{\dagger} \otimes ualting \lim_{x \rightarrow a^{\dagger}} f(x) = 0 = \lim_{x \rightarrow a^{\dagger}} g(x)$

we have $M \leq \frac{f(\beta)}{g(\beta)}$, $\forall \alpha < \beta < \alpha + \delta$. Surce M > 0 is arbitrary, we have $\lim_{x \to \alpha^+} \frac{f(x)}{g(x)} = +\infty = L$.

Similarly for L= - 62 (check!) ×

$$\underbrace{eg \ 6.3.4}_{(a)} \qquad \underbrace{luin}_{X \to 0t} \underbrace{Suix}_{X \to 0t} \qquad (note \ Jx is not differentiable at x=0)$$

$$= \underbrace{luin}_{X \to 0t} \underbrace{cox}_{\frac{1}{2Jx}} \qquad (f(x) = Ainx \ diff. & f' = cox}_{g(x) = Jx} \quad diff. (f_n \times no))$$

$$= 0 \qquad (luit exists, calculation justified)$$

(b)
$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{zx}$$
?
 $\sum_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{zx}$?
 $\sum_{x \to 0} \frac{1 - \cos x}{zx}$

However, f(x) = sux diff. & f'(x) = cox g(x) = 2x diff. $x g'(x) = 2 \neq 0 \quad \forall x \in \mathbb{R}$.

L'Hospital's Rule I (even the earier Thu 6.3.1)
$$\Rightarrow$$

lein Airx = lein (ax = 1) has a limit

$$\lim_{X \to 0} \frac{A \ln X}{Z \chi} = \lim_{X \to 0} \frac{C X}{Z} = \frac{1}{Z} \quad \text{has a limit.}$$

Hence L'Hospital's Rule I again =)

$$\lim_{X \to 0+} \frac{1 - Cost}{x^2} = \lim_{X \to 0+} \frac{sint}{2x}$$

Since
$$(-(e_x x) = xin x exists & (x^2) = 2x \neq 0 \forall x > 0$$

And
$$\lim_{X \to 0^-} \frac{1-(\omega X)}{X^2} = \lim_{X \to 0^-} \frac{\sin X}{zx}$$

Since
$$\lim_{x \to 0} \frac{\lambda \dot{u} x}{zx} = \frac{1}{2}$$
 exist, the 2 1-sided limits equal

and hence
$$\lim_{X \to 0} \frac{1-\cos X}{X^2} = \lim_{X \to 0} \frac{\sin X}{zx} = \frac{1}{z}$$

(C)
$$\lim_{X \to 0} \frac{e^{X}}{x} = \lim_{X \to 0} \frac{e^{X}}{1} = 1$$
. (cliech conditions!)

As in (b), this existence of limit implies

$$\lim_{X \to 0} \left(\frac{e^{X} - |-X|}{X^{2}} \right) = \lim_{X \to 0} \frac{e^{X} - |}{2X} = 1 \qquad (\text{choch conditions!})$$

(d)
$$\lim_{X \to 1} \frac{\ln X}{X-1}$$
 (defines for $X > 0$)

$$= \lim_{X \to 1} \frac{1/X}{1}$$
 ($(\ln X)' = \frac{1}{X}$ exists $\forall X > 0$)
 $(X-1)' = 1$ exists ∓ 0 , $\forall X > 0$)
 $= 1$ ($\ln i \pm 0$, $i \pm 0$, $\forall X > 0$)

$$Thm 6.3.5 (L'Hogital's Rule I)$$
Let $-\infty \le \alpha < b \le \infty$
 $\cdot f, g$ differentiable on (a, b) (NO assumption at end pts.)
 $\cdot g'(x) = 0, \forall x \in (a, b)$
 $\cdot lin_{x \to a^{+}} g(x) = \pm \infty$
(a) If $lin_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \mathbb{R}$, then $lin_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
(b) If $lin_{x \to a^{+}} \frac{f'(x)}{g'(x)} = L \in \{-\infty, \infty\}$, then $lin_{x \to a^{+}} \frac{f(x)}{g(x)} = L$
 $Pf: Only fn$ "lin $g(x) = +\infty$ ".
"lin $g(x) = -\infty$ " is similar.

As before,
$$\forall \alpha, \beta \in (a, b)$$
 with $a < d < \beta < b$, we have
• $g(\beta) \neq g(\alpha)$ and
• $\frac{f(\beta) - f(\alpha)}{g(\beta) - g(\alpha)} = \frac{f(u)}{g'(u)}$ for some $u \in (\alpha, \beta)$

 $\underline{Caee(A)}: L \in \mathbb{R}$. Subcase L>0 By $\lim_{x \to at} \frac{f'(x)}{o'(x)} = L$, $\forall \varepsilon > 0$ ($\varepsilon < \frac{L}{\varepsilon}$), $\exists \delta > 0$ such that $0 < L - \varepsilon < \frac{f(u)}{q(u)} < L + \varepsilon, \quad \forall u \in (a, q + \delta) (z + \delta < b)$ $\Rightarrow \quad L-\varepsilon < \frac{f(\beta) - f(\alpha)}{q(\beta) - q(\alpha)} < L+\varepsilon, \quad \forall \quad q < d < \beta < q + \delta.$ As him g(x)= +00, I CE (a, a+5) such that Q(X) > O, $\forall x \in (a, c) (c(a, q+b))$ Then for any a < d < c, we have $L-\varepsilon < \frac{f(c)-f(\alpha)}{g(c)-g(\alpha)} < L+\varepsilon$ (by taking $\beta = c$)

Using again $\lim_{X \to at} G(X) = t \cdot \infty$, we have $\lim_{X \to at} \frac{g(c)}{g(x)} = 0$

Therefore, I O<CI<C such that $0 < \frac{g(c)}{q(\alpha)} < 1$, $\forall \alpha \in (\alpha, c_1) (c(\alpha, c))$ (Both g(x) & g(c) >0 from above) (Mistake in Tauthank) $\frac{y(\alpha) - y(c)}{q(\alpha)} = 1 - \frac{g(c)}{q(\alpha)} > 0, \quad \forall \ \alpha \in (q, c_1)$ Therefore $L-\xi < \frac{f(c)-f(x)}{q(c)-q(x)} < L+\xi$ $\left(L-\zeta\right)\left(1-\frac{g(c)}{q(\alpha)}\right) < \frac{f(c)-f(\alpha)}{q(c)-q(\alpha)} \cdot \left(1-\frac{g(c)}{q(\alpha)}\right) < \left(L+\xi\right)\left(1-\frac{g(c)}{g(\alpha)}\right)$ ie. $(L-\xi)(I-\frac{g(c)}{g(\alpha)}) < \frac{f(\alpha)}{g(\alpha)} - \frac{f(c)}{g(\alpha)} < (L+\xi)(I-\frac{g(c)}{g(\alpha)})$ $\forall \alpha \in (\mathfrak{q}, C_1)$ which is

$$\left(L-\varepsilon\right)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}<\frac{f(\alpha)}{g(\alpha)}<\left(L+\varepsilon\right)\left(1-\frac{g(c)}{g(\alpha)}\right)+\frac{f(c)}{g(\alpha)}$$

$$\forall \alpha \in (a,c)$$

Using $\lim_{X \to a+} g(X) = +\infty$ again, $\exists C_2 \in (a, C_1)$ such that

$$0 < \frac{g(c)}{g(\alpha)} < \eta$$
 and $0 < \frac{|f(c)|}{g(\alpha)} < \eta$, $\forall \alpha \in (q, c_2)$

where $\eta = \min\{1, \varepsilon, \frac{\varepsilon}{L+1}\} > 0$.

Then
$$\frac{f(\alpha)}{g(\alpha)} < (L+\varepsilon) + \eta < L+\varepsilon \varepsilon$$

and
$$\frac{f(\alpha)}{g(\alpha)} > (L-\varepsilon)(1-\eta) - \eta \qquad (since \ L+\varepsilon > L-\varepsilon > \varepsilon)$$
$$= (L-\varepsilon) - [(L-\varepsilon) + 1]\eta$$
$$\geqslant (L-\varepsilon) - (L+1-\varepsilon) \cdot \frac{\varepsilon}{L+1} \qquad (\eta < \frac{\varepsilon}{L+1})$$
$$= L - \xi - \xi + \frac{\varepsilon^2}{L+1}$$
$$> L-\varepsilon \varepsilon$$

We've proved that, $\forall 2 \varepsilon > 0$ (agui. to $\forall \varepsilon > 0$) ($z \varepsilon < L$) $\exists c_2 \varepsilon (a, c_1)$ such that $L - 2\varepsilon < \frac{f(\alpha)}{g(\alpha)} < L + 2\varepsilon$, $\forall d \varepsilon (a, c_2)$. (c_2 can be unditten as $a + \delta$) \vdots , $\lim_{X \to at} \frac{f(x)}{g(x)} = L$.

The proof of the subcess that L=0 and L<0 are sinclar (with careful consideration of "sign" in the inequalities!)

Or, by taking
$$d \Rightarrow a^{+}$$
 in (with $\lim_{\alpha \Rightarrow a^{+}} g(\alpha) = +\infty$)
 $(L-\varepsilon)(1-\frac{g(c)}{g(\alpha)}) + \frac{f(c)}{g(\alpha)} < \frac{f(\alpha)}{g(\alpha)} < (L+\varepsilon)(1-\frac{g(c)}{g(\alpha)}) + \frac{f(c)}{g(\alpha)},$

We have
$$L - 2 \leq \liminf_{\substack{d \Rightarrow a^{+} \\ g(\alpha)}} \leq \limsup_{\substack{d \Rightarrow a^{+} \\ d \Rightarrow a^{+} \\ g(\alpha)}} \frac{f(\alpha)}{g(\alpha)} \leq L + 2$$

Since $\epsilon > 0$ ($\epsilon < \frac{1}{2}$) is aribitrary, we have
 $L \leq \liminf_{\substack{d \Rightarrow a^{+} \\ g(\alpha)}} \frac{f(\alpha)}{g(\alpha)} \leq \limsup_{\substack{d \Rightarrow a^{+} \\ d \Rightarrow a^{+} \\ g(\alpha)}} \frac{f(\alpha)}{g(\alpha)} \leq L$
 $\Rightarrow \lim_{\substack{x \Rightarrow a^{+} \\ g(x)}} \frac{f(\alpha)}{g(x)} \leq \operatorname{and} equal L$

(Pf of (b): next lecture)