(c) Bernoulli's inequality

If $\alpha>1$, then $(1+x)^{\alpha} \geqslant 1+\alpha x, \quad \forall x>-1$. with "equality $\Leftrightarrow x=0$ ".

Pf: Consider $h(x)=(1+x)^{\alpha}$ on $(-1,+\infty)$.
($1+x>0 \Rightarrow$ taking root of $1+x$ is well-dofind far $\alpha \neq$ integer)
Then $f^{\prime}(x)=\alpha(1+x)^{\alpha-1}$ on $(-1,+\infty)$
(We've proved this in eg 6.1.10(d) for rational α. The case of irrational α will be proved in §8.3)

If $x>0$, applying MVT to $h(x)$ on $[0, x]$, we have $c \in(0, x)$ such that

$$
h(x)-h(0)=h^{\prime}(c)(x-0)
$$

That is

$$
(1+x)^{\alpha}-1=\alpha(1+c)^{\alpha-1} x .
$$

Since $c>0 \& \alpha-1>0$, we have $(1+c)^{\alpha-1}>1$.
$\therefore \quad(1+x)^{\alpha}>1+\alpha x$ (The ines. is strict!)
If $-1<x<0$, then applying MVT to $h(x)$ on $[x, 0]$, we have $c \in(x, 0)$ such that $h(0)-h(x)=h^{\prime}(c)(0-x)$

That is

$$
1-(1+x)^{\alpha}=\alpha(1+c)^{\alpha-1}(-x)
$$

since $-1<x<c<0$, we have $0<1+c<1$

$$
\begin{aligned}
\Rightarrow & (1+c)^{\alpha-1}<1 \quad(\alpha-1>0) \\
\therefore \quad & 1-(1+x)^{\alpha}<\alpha(-x) \quad(\operatorname{s}-x>0)
\end{aligned}
$$

That is $\quad(1+x)^{\alpha}>1+\alpha x \quad$ (Meg. is strict!)

Clearly $(1+x)^{\alpha}=1+\alpha x$ far $x=0$.
Therefor $(1+x)^{\alpha} \geqslant 1+\alpha x, \forall x \in(-1,+\infty)$ and
"equality $\Leftrightarrow x=0 "$.
(d) If $0<\alpha<1$, then $\forall a>0 \& b>0$, we have

$$
a^{\alpha} b^{1-\alpha} \leqslant \alpha a+(1-\alpha) b .
$$

with "equality $\Leftrightarrow a=b$ ". (Example of application of
(Note: fa $\alpha=\frac{1}{2}$, we have $\sqrt{a b} \leqslant \frac{a+b}{2}$) $1^{\text {st }}$ derivative test)

Pf: Consider $g(x)=\alpha x-x^{\alpha}$ for $x \geq 0$.
Then $g^{\prime}(x)=\alpha-\alpha x^{\alpha-1}=\alpha\left(1-x^{-(1-\alpha)}\right) \quad(0<\alpha<1)$

$$
\Rightarrow g^{\prime}(x)\left\{\begin{array}{lll}
<0 & \text { far } & 0<x<1 \\
>0 & \text { far } & 1<x
\end{array}\right.
$$

Hence $g(x) \geq g(1), \quad \forall x \geq 0$ and

$$
g(x)=g(1) \Leftrightarrow x=1
$$

That is, $\alpha x-x^{\alpha} \geqslant \alpha-1$ cr

$$
x^{\alpha} \leqslant \alpha x+(1-\alpha), \quad \forall x \geqslant 0
$$

with "equality $\Leftrightarrow x=1$ ".
Now fa $a>0, b>0$, put $x=\frac{a}{b}>0$ into the ines., we have

$$
\begin{array}{ll}
& \frac{a^{\alpha}}{b^{\alpha}} \leqslant \frac{\alpha a}{b}+(1-\alpha) \\
\Rightarrow \quad & a^{\alpha} b^{1-\alpha} \leqslant \alpha a+(1-\alpha) b
\end{array}
$$

Intermediate Value Property of Derivatives (Darboux's Thu)

Lemma 6.2.11 Let • I be an interval and $c \in I$.

- $f: I \rightarrow \mathbb{R}$ and $f^{\prime}(c)$ exists.

Then
(a) If $f^{\prime}(c)>0$, then $\exists \delta>0$ sit.

$$
f(x)>f(c) \quad \forall x \in(c, c+\delta) \cap I
$$

(b) If $f^{\prime}(c)<0$, then $\exists \delta>0$ sit.

$$
f(x)>f(c) \quad \forall x \in(c-\delta, c) \cap I
$$

Pf: (a) Since $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c)>0$, (Thu 4.2 .9 of the textbook,

$$
\begin{gathered}
\exists \delta>0 \text { st. } \frac{f(x)-f(c)}{x-c}>0, \forall x \in(c-\delta, c+\delta) \cap I \\
\therefore \quad f(x)-f(c)>0, \forall x \in(c, c+\delta) \cap I .
\end{gathered}
$$

(b) Similarly

$$
\begin{array}{ll}
\exists \delta>0 & \text { st. } \frac{f(x)-f(c)}{x-c}<0, \quad \forall x \in(c-\delta, c+\delta) \cap I \\
\therefore & f(x)-f(c)>0, \forall x \in(c-\delta, c) \cap I .
\end{array}
$$

The 6.2.12 (Darboux's The)
If - f is differentiable on $[a, b]$

- k is a number between $f^{\prime}(a)$ and $f^{\prime}(b),\left(f^{\prime}(a) \neq f^{\prime}(b)\right)$
then $\exists c \in(a, b)$ such that

$$
f^{\prime}(c)=k .
$$

$\binom{$ Remake: No cutincity of f^{\prime} is assmened. Hence the usual }{ Intermediate Value The of contiunons function doesn't apply. }

Pf: Suppose $f^{\prime}(a)<f^{\prime}(b)$ and $f^{\prime}(a)<k<f^{\prime}(b)$.
Eeffive $g(x)=k x-f(x), \forall x \in[a, b]$.
Then f differentiable \Rightarrow
g is differentiable \& hence continuous on $[a, b]$
In particular, g attains a maximum value on $[a, b]$.
Note that $g^{\prime}(a)=k-f^{\prime}(a)>0$.
By Lemma 6.2.11, $\exists \delta>0$ Sit.

$$
g(x)>g(a), \quad \forall x \in(a, a+\delta) \cap[a, b]
$$

$\therefore \quad a$ is not the maximum of g

Also $\quad g^{\prime}(b)=k-f^{\prime}(b)<0$, Lemma 6.2. I1 unplies $\exists \delta>0$ s.t. $g(x)>g(b), \quad \forall x \in(b-\delta, b) \cap[a, b]$.
$\therefore b$ is not the maximum of g.
Together $\Rightarrow g$ attains tis maxiaum at an
interica point $c \in(a, b)$.
Then Iuterion Extrencom Thm (Thm 6.2.1) unglies

$$
0=g^{\prime}(c)=k-f^{\prime}(c) .
$$

If $f^{\prime}(b)<f^{\prime}(a)$, consider $(-f)$ and we can find
sumilary a $c \in(a, b)$ s.t. $\quad f^{\prime}(c)=k$.

Eg6.2.13 The signum function $g(x)=\operatorname{sgn}(x)$ restiucted on $[-1,1]$:

$$
g(x)=\left\{\begin{array}{lc}
1, & 0<x \leqslant 1 \\
0, & x=0 \\
-1, & -1 \leq x<0
\end{array}\right.
$$

doesn't satesfy the internediate value property,

$$
\left(1=g(1),-1=g(-1), \&-1<\frac{1}{2}<1 \text {; but no } x \in(-1,1) \text { s.t. } g(x)=\frac{1}{2}\right)
$$

Therefae $g(x) \neq f^{\prime}(x)$ for any differentiable function f on $[-1,1]$.
(i.e. The differential egt $\frac{d f}{d x}=9$ has no solution on $[-1,1]$)

