Thun 6.1.9 (Same notations as in them 6.1.8)
Let
$$f: I \rightarrow IR$$
 be shirt monotone (no need to assume containity).
If f is differentiable on I and $f(x) \neq 0$, $\forall x \in I$. Then the
invest function g is differentiable on $J = f(I)$ and
 $g' = \frac{1}{f' \circ g}$

Pf:
$$f$$
 diff. on I ⇒ f is containons. Then apply Thur 6.1.8
to all X ∈ I. X

Remark on simplified notations: Usually, we write y = f(x) and x = g(y) for functions inverse to each other. Then the famula in Thun 6.1.9 can be written as

$$g'(y) = \frac{1}{(f' \circ g)(y)} \quad \forall y \in J$$

or $(g_0f)(k) = \frac{f(k)}{f(k)}$, AxeI

In this notation, one often simply write $g'(y) = \frac{1}{S(x)}$

without explicitly stated that $y = f(x) \approx x = g(y)$

eg 6.1.10
(a)
$$f(x) = x^{5} + 4x + s$$
 gives a strictly increasing (why?) and
continuous function on \mathbb{R} (and $f(\mathbb{R}) = \mathbb{R}$ why?)
 $f'(x) = 5x^{4} + 4 \ge 4 > 0$.
Therefore, Thurb.1.8 \Rightarrow $g = f^{-1}$ is differentiable $\forall y \in \mathbb{R}$.
And for example, at $x = 1$, $g'(\mathcal{E}) = g'(f(\mathcal{I})) = \frac{1}{f'(\mathcal{I})} = \frac{1}{g}$
(b) $f = [0, \infty) \rightarrow [0, \infty)$ given by $f(x) = x^{n}$ where $n = 2, 4, 6, \cdots$
Therefore, $f(x) = 1, 1$ and $f(x) = x^{n}$ where $n = 2, 4, 6, \cdots$

Then
$$f$$
 is strictly increasing curtainous on IO, OO)
Note that $f(IO, OO) = IO, OO$. The inverse function g
defines on IO, OO) and is strictly increasing and cartainous.
Since $f(X) = NX^{N-1} > O$, $HX > O$, $\&$ $f((O, OO)) = (O, OO)$.
 g is differentiable $Hy > O$ and

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{n(g(y))^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}} = \frac{1}{n(y^{\frac{1}{n}})^{n-1}}$$
(The inverse is denoted by $g(y) = y^{\frac{1}{n}}, \forall y \in [0, \infty)$.)

Note: 9 is not differentiable at y=0 (one side derivative doesn't existe. Onvitted !. But the argument is the same as in the vext example.)

(c)
$$n=3,5,7,\cdots$$
. $F(x)=x^n$, $\forall x \in \mathbb{R}$, is strictly increasing & calibrations.
Inverse is $G(y)=y^n$, $\forall y \in \mathbb{R}$.
As in example (b) above, G is differentiable $\forall y \neq 0$
and $G'(y)=\frac{1}{n}y^{\frac{1}{n}-1}$ (check!)
And again, G is not differentiable at $y=0$.
If Suppose that G is differentiable at $y=0$.
Then consider the composite function $y = F(G(y))$.
Suilly $G(0)=0$ and $F'(0)=0$ exists.
Chain rule implies $1=\frac{dy}{dy}=\frac{F'(G(0))}{y}G'(0)=0$
which is a contradiction. $-\frac{1}{2}G'(0)$ doesn't exist x
(d) Recall if $r=\frac{n}{n}>0$, $m, n \in \{1, 2, 3, \dots, 5\}$, then
 $x^r=x^{\frac{m}{n}}$ is defined as $(x^{\frac{1}{n}})^m$, $\forall x \ge 0$.
Therefore, the function $R=\log$ where
 $g(x)=x^{\frac{1}{n}}, x\ge 0$ (the inverse diversed in eg(b))
and $f(x)=x^{\frac{m}{n}}, x\ge 0$

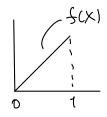
(i.e.
$$R(x) = x^{r} = (x^{\frac{1}{m}})^{m} = f(g(x)), \forall x \in [0, \infty)$$
)
Then Chain rule $\Rightarrow \forall x \in [0, \infty)$
 $R'(x) = f'(g(x))g(x) = m(x^{\frac{1}{m}})^{m-1} \frac{1}{m}x^{\frac{1}{m}-1}$
 $= (\frac{m}{n})x^{\binom{m}{m}-1}$
 $\therefore (x^{r})' = rx^{r-1}, \forall x \ge 0, \text{ true for all rational } r > 0.$
(e) All x is shally inneasing on $I = I - \frac{\pi}{2}, \frac{\pi}{2} I$
and maps I to $J = [-1, 1]$.
 \Rightarrow inverse axists, and we denote it by
Arcain : $[-1, 1] \Rightarrow [-\frac{\pi}{2}, \frac{\pi}{2}]$
i.e. If $x \in [-\frac{\pi}{2}, \frac{\pi}{2}] \ge y \in [-1, 1]$, then
 $y = a \ln x \Leftrightarrow x = Arcain Y$.
Note that $Dain x = (a x \neq 0 \text{ fn } x \in (-\frac{\pi}{2}, \frac{\pi}{2}) \text{ (no end pts.)}$
Thus $6[1.8 \Rightarrow$
 D Arcain $y = \frac{1}{Dain x} = \frac{1}{(a \times x)} = \frac{1}{\sqrt{1-aix^{2}x}}$
 $= \frac{1}{\sqrt{1-y^{2}}}, \quad \forall y \in (-1, 1)$

\$6.2 The Mean Value Theorem

Recall: function f=I>R is said to have a <u>(+)</u> ζ-ξ ς ς+δ <u>relative</u> <u>maximum</u> at CEI (320) if $\exists a \text{ neighborhood of } (V = V_{\delta}(C) = (c \cdot \delta, c + \delta)$, such that $f(x) \leq f(c)$, $\forall x \in V \cap I$; $\begin{pmatrix} some part may be out of I \\ f \in f \\ c \in C \\$ relative minimum at CEI if $\exists a \text{ neighborhood of } (V = V_{\delta}(C) = (c \cdot \delta, c + \delta)$, such that f(x)>f(c), UXEVNI; relative extrement at CEI if either "relative maximum" ~ "relative minimum"

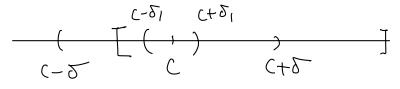
Note: The condition that CEI is an interior point is neccessary:

eg:
$$f(x)=x$$
 on TO,1] has relative extremum
at x=0 (min), but $f'(0)=1\pm0$,
(at x=1 (max), but $f'(1)=1\pm0$.)



Pf(of Thm 6.2.1): Prove only the case of relative maximum. The case of relative numiname is similar. Let CE interia of I, I has a relative maximum at c and f(c) exists. Suppose on the contrary that f(c) = 0, then either f'(c) > 0 or f'(c) < 0. If f'(c) > 0, i.e. $\lim_{\substack{X \to C \\ |X \neq c|}} \frac{f(x) - f(c)}{x - c} > 0$. Then (by Thm Fiz. 9 of the Textbook, MATH 2050), I a ubd. V=V5(C) $\frac{f(x)-f(c)}{x-c} > 0 \quad \forall x \in V \cap I, x \neq c.$ such that Since CEInterior of I, one can find a S,, OSTIST

(if needed) so that (C-5, C+5,) C VNI.



Note that f there a relative number, there exists
$$\delta_{1} > 0$$

such that $f(x) \leq f(c)$, $\forall x \in (c - \delta_{2}, c + \delta_{2}) \land I$
Then for $\delta_{3} = \min\{\delta_{1}, \delta_{2} \leq > 0$,
 $(c - \delta_{2}, c + \delta_{3}) \subset (c - \delta_{1}, c + \delta_{1}) \land I \notin (c - \delta_{2}, c + \delta_{2}) \land I$
As a result,
 $\frac{f(x) - f(c)}{x - c} > 0$,
 $d = f(x) \leq f(c)$
Sume $(c, c + \delta_{3}) \subset (c - \delta_{3}, c + \delta_{3}) \subset V \land I$
The $(s + \inf equality \inf p)$ is
 $\exists x > c$, in $(c - \delta_{3}, c + \delta_{3}) = V \land I$
 $\frac{f(x) - f(c)}{x - c} > 0 \Rightarrow f(x) - f(c) > 0$,
which contradicts the $2^{n}cl \inf equality$.
Similarly, if $f(c) < 0$, one can find $\delta'_{3} > 0$ so that
 $\frac{f(x) - f(c)}{x - c} < 0 \Rightarrow f(x) - f(c) > 0$,
 $\forall x \in (c - \delta'_{3}, c + \delta'_{3}), x + c$.
and $f(x) \leq f(c)$
The $(s + \inf equality = \Rightarrow \exists x < c$ such that $\frac{f(x) - f(c)}{x - c} < 0$.

$$\Rightarrow f(x) - f(c) > 0$$

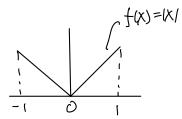
cantracticts the znd moquality.

All together, we have

f(c)=0. ★

Cor6.2.2 Let
$$\cdot f: I \Rightarrow \mathbb{R}$$
 cartinuous
 $\cdot f$ has a velotive extremum at an interior point $c \in I$.
Then either $\cdot f(c)$ doesn't exist
 $\sim \int \cdot f(c) = 0$.

Up :
$$f(x) = |x|$$
 on $I = [-1, 1]$.
interior minimum at $x=0$.
 $f(x)$ doesn't exist



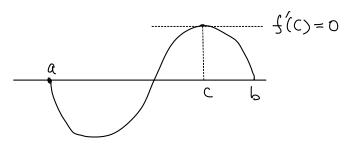
$$\frac{\text{Thm } 6.2.3}{\text{Suppose}} \left(\frac{\text{Rolle's Theorem}}{\text{Suppose}} \right) \qquad (a < b)$$

$$Suppose \cdot S : [a,b] \rightarrow \mathbb{R} \text{ continuous} (on closed interval I = [a,b])$$

$$\cdot f'(x) \text{ exists} \quad \forall x \in (a,b) (\text{open interval}, \text{interim of I})$$

$$\cdot f(a) = f(b) = 0$$

$$\text{Then } \exists c \in (a,b) \text{ such that} \quad f'(c) = 0$$



Pf: If f(x)=0 on ta,b], then f(x)=0 v x ∈ ta,b]. Notre done. If f(x) ≠0, then either f>0 for some point in (a,b) or f<0 for some point in (a,b). Note that f is untimous on the closed interval ta,b], f attains an absolute maximum and an absolute numium on I. (Thrn 53.4 of the Textbook, MATH 2050)

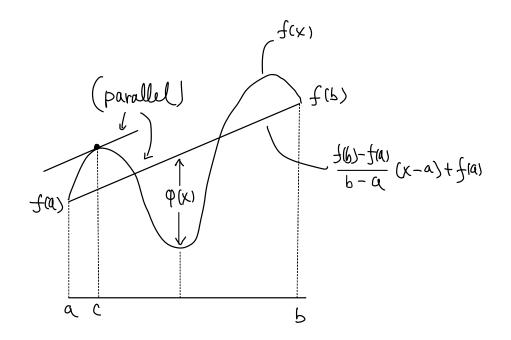
Hence, if f > 0 for some point in (a,b), f attains the absolute maximum, i.e. the value $sup_{f(x)} = x \in I_{f} = 0$, at some point $c \in (a,b)$ as f(a) = f(b) = 0.

Since
$$C \in (a,b)$$
, $f'(c)$ exists.
By Interior Extreme Thenew (Thm 6.2.1), $f'(c)=0$.
If there is no $x \in (a,b)$ s.t. $f > 0$, then we must have
 $f < 0$ for some $x \in (a,b)$. Hence $(-f) > 0$ for some $x \in (a,b)$
and $-f$ satisfies all conditions as f . Therefore,
 $\exists c \in (a,b)$ such that $(-f)'(c)=0 \Rightarrow f'(c)=0$.

$$\frac{Thm 6.2.4}{Mean Value Theorem}$$
Suppose • $f:[a,b] \rightarrow \mathbb{R}$ continuous (af'(x) exists $\forall x \in (a,b)$
Then $\exists a$ point $c \in (a,b)$ such that
 $f(b) - f(a) = f(c)(b-a)$

Pf: Consider the function defined on
$$[a,b]$$
:
 $f(x) = f(x) - \left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]$
 $= f(x) - f(a) - \frac{f(b)-f(a)}{b-a}(x-a)$

Then φ is continuous on [a,b] as f is containons on [a,b], and $\varphi'(x)$ exists $\forall x \in (a,b)$ as f'(x) exists $\forall x \in (a,b)$.



At the end points

$$P(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} (a - a) = 0$$

$$P(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0$$

$$P(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} (b - a) = 0$$

... 9 satisfies all conditions in Rolle's Thm (Thm 6.2.3). Hence $\exists C \in (9, b)$ such that

$$0 = \varphi'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} \quad (by Thm 6.1.3 \text{ and } (x)' = 1)$$

$$\therefore f(b) - f(a) = f'(c)(b - a) . \quad (b)$$

Applications of Mean Value Thenem

Thm 6.2.5 Suppose
$$f:[a,b] \Rightarrow |\mathbb{R} \text{ continuous } (a < b)$$

 $f(x) \text{ exists } \forall x \in (a,b) \text{ (ie. f differentiable } m (a,b))$
 $f(x) = 0, \forall x \in (a,b).$
Then f is a constant on $[a,b]$.
 $ff: \text{ let } x \in [a,b] \text{ and } x > a.$
Apply a part of the formula of the formula

Applying Mean Value Three to
$$f: [a, x] \rightarrow \mathbb{R}$$
,
(which clearly satisfies all conditions of the Three)
we find a point $C \in (a, x)$ such that
 $f(x) - f(a) = f(c) (x - a) = o$ (by assumption $f(c) = o$)
 $\Rightarrow f(x) = f(a), \forall x \in \mathbb{I}$.
 $\therefore f io constant on \mathbb{I}$.

Cor6.2.6 Suppose
$$f,g:[a,b] \rightarrow \mathbb{R}$$
 continuon
 f,g differentiable on (a,b)
 $f'(x) = g'(x), \forall x \in (a,b)$.
Then \exists constant C such that $f = g + C$ on $[a,b]$.

Recall f:I>R is said to be

• Unclasing on I if $X_1 < X_2$ $(X_1, X_2 \in I) \implies f(X_1) \le f(X_2)$

____note:"not <"

· decreasing on I if - f is increasing on I.

Thu 6.2.7 Let
$$f: I \rightarrow \mathbb{R}$$
 be differentiable. Then
(a) f is increasing on $I \iff f(x) \ge 0$, $\forall x \in I$
(b) f is decreasing on $I \iff f(x) \le 0$, $\forall x \in I$

Pf: (a) (≠) let $f(x) \ge 0$, $\forall x \in I$. Then fn any $x_1, x_2 \in I$ with $x_1 < x_2$, we can capply the Mean Value Thm to $f: [x_1, x_2] \rightarrow \mathbb{R}$ (since f is differentiable on $I \Rightarrow f: [x_1, x_2] \Rightarrow \mathbb{R}$ satisfies all conditions of mut) and find a point $c \in (x_1, x_2)$ such that $f(x_2) - f(x_1) = f(c) (x_2 - x_1)$ ≥ 0 since $f(c) \ge 0 \notin x_2 > x_1$. $\therefore f$ is increasing on I.

(a) (=>) Suppose f is differentiable and increasing on I. Then $\forall c \in I$, we have $\frac{f(x) - f(c)}{x - c} \ge 0$, $\forall x \in I$, $x \neq c$

Hence f differentiable at (=)

$$f'(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c} \ge 0$$

(b) Applying (a) to -f. X

<u>Remarks</u> :

$$\frac{\text{Thm } 6.2.8}{\text{Let}} (First Derivative Test for Extrema})$$

$$\text{Let} \cdot f: (a,b) \rightarrow \mathbb{R} (athings) (a < b)$$

$$\cdot c \in (a,b)$$

$$\cdot f \text{ is differentiable } (a,c) \text{ and } (c,b).$$

$$\text{Then } (a) \text{ If } \exists \delta > 0 \text{ s.t. } (c - \delta, c + \delta) \leq (a,b) \text{ I}$$

$$\cdot f(x) \ge 0 \text{ for } x \in (c - \delta, c + \delta)$$

$$\text{Then } (a) \text{ If } \exists \delta > 0 \text{ s.t. } (c - \delta, c + \delta) \leq (a,b) \text{ I}$$

$$\cdot f(x) \ge 0 \text{ for } x \in (c, c + \delta)$$

$$\text{Then } f \text{ has a } nolative maximum at c.$$

$$(b) \text{ If } \exists \delta > 0 \text{ s.t. } (c - \delta, c + \delta) \leq (a,b) \text{ I}$$

$$\cdot f(x) \le 0 \text{ for } x \in (c, c + \delta)$$

$$\text{Then } f \text{ has a } nolative maximum at c.$$

$$(b) \text{ If } \exists \delta > 0 \text{ s.t. } (c - \delta, c + \delta) \leq (a,b) \text{ I}$$

$$\cdot f(x) \le 0 \text{ for } x \in (c, c + \delta)$$

$$\text{Then } f \text{ has a } nolative minimum at c.$$

$$Pf: (a) \quad If \quad x \in (c-\delta,c), \text{ then Mean Value Thm}$$

$$\left(applying \quad to \quad f = [x,c] \Rightarrow R \right) \text{ implies } \exists c_x \in (x,c) \quad s.t.$$

$$f(c) - f(x) = f'(c_x)(c-x)$$

$$\geq 0 \quad \left(since \quad f' \ge 0 \quad on \quad (c-\delta,c) \right)$$

(b)

Further Applications of the Mean Value Theorem Examples 6.2.9

(a) Rolle's Thm 6.2.3 can be used to "locate" roots of a function. In fact, Rolle's Thm => 9=f' always has a voot between any two zeros of f (provided f is differentiable & etc.) explicit eq: $g(x) = (ax) = (xinx)^{\prime}$ sin x = 0 for x = nit for $n \in \mathbb{Z}$. Rolle's => cox has a root in (nti, (n+1) Ti), HNEZ. (eg. of Bessel functions In is omitted) (b) Using Mean Value Therrow for approximate calculations & error estimates, lg. Approximate J105. Applying Mean Value Thm to f(x) = JX on [100, 105], f(105) - f(100) = f(c)(105 - 100) fa some $c \in (100, 105)$. In eg. 6.1,10 (d), we've seen that $f(c) = \frac{1}{2\sqrt{c}}$ $\int \sqrt{105} - \sqrt{100} = \frac{5}{2.1c}$ for fome $C \in (100, 105)$

$$\Rightarrow 10 + \frac{5}{2\sqrt{105}} < \sqrt{105} < 10 + \frac{5}{2\sqrt{105}} = 10 + \frac{5}{2\cdot10} = 10.25$$
And $\sqrt{105} < \sqrt{121} = 11 \Rightarrow \sqrt{105} > 10 + \frac{5}{2\cdot11}$
Hence. $\frac{205}{22} < \sqrt{105} < \frac{41}{4}$
(Of course, the estimate can be improved by more careful analysis)
$$\frac{\text{Examples } 6.2.10 \text{ (Inequalities)}}{(2) \quad e^{X} \ge 1+X, \forall X \in \mathbb{R} \text{ and "equality} \iff X=0".$$
Pf: We will use the fact that
 $f(x) = e^{X}$ these derivative $f(x) = e^{X}, \forall X \in \mathbb{R}$
 $(and f(0)=1)$
 $and \quad e^{X} > 1 \quad fn \quad X>0$
 $e^{X} < 1 \quad fn \quad X<0$.
(To be defined and proved in §8.3.)
If $X=0$, then $e^{X} = 1 = 1+X$. We're done.
If $X>0$, applying MVT (Mean Value Thrn) to
 $f(x) = e^{X} \text{ on } TO, X=J$,

)

we have
$$c \in (0, x)$$
 such that
 $e^{x} - e^{0} = e^{c}(x - 0)$
 $\therefore e^{x} - 1 > x$.
If $x < 0$, applying MVT to $f(x) = e^{x}$ on $[x, 0]$,
we have $c \in (x, 0)$ such that
 $e^{0} - e^{x} = e^{c}(0 - x)$
 $1 - e^{x} < -x$ $(e^{c} < 1, -x > 0)$
 $\therefore e^{x} > 1 + x, \forall x < 0$.

Finally, one observes, in both cases, the inequality is strict. So "equality $\Leftrightarrow x=0^{\prime\prime}$.

(b)
$$-x \leq aux \leq x$$
, $\forall x \geq 0$.

Pf: The inequalities are clear for X = 0. Let X > 0. Consider g(x) = sin x on [0, x]. Then MVT implies $\exists c \in (0, x) s.t.$ sin x - sin 0 = (cos c)(x - 0)

Using $-1 \le \cos(\le 1)$ and $\sin 0 = 0$, we have $-x \le \sin x \le x$ (as k > 0)