eg 6.1.7 Let $f: I \rightarrow \mathbb{R}$ is differentiable on I (ie at all pouts of I)
(a) Chair rule $(a l s o) \Rightarrow\left(f^{n}\right)^{\prime}(x)=n(f(x))^{n-1} f^{\prime}(x)$
(b) If farther costume $f(x) \neq 0, \forall x \in I$, (mistake in textbook, $f^{\prime} \neq 0$ not needed

$$
\left(\frac{1}{f}\right)^{\prime}(x)=-\frac{f^{\prime}(x)}{(f(x))^{2}}, \quad \forall x \in I
$$

by using $g(y)=\frac{1}{y}$ far $y \neq 0$ and $g^{\prime}(y)=-\frac{1}{y^{2}}, \quad \forall y \neq 0$.
(c)

$$
\text { If }\left.\right|^{\prime}(x)=\operatorname{sgn}(f(x)) \cdot f^{\prime}(x)= \begin{cases}f^{\prime}(x), & \text { if } f(x)>0 \\ -f^{\prime}(x), & \text { if } f(x)<0\end{cases}
$$

(where $\operatorname{sgn}(x)=\left\{\begin{array}{ll}1 & , x>0 \\ 0 & , x=0 \\ -1 & , x<0\end{array}\right.$ the signum function)

Pf: Consider $g(x)=|x|$. Then $g:(-\infty, \infty) \rightarrow \mathbb{R}$ and we've proved that g is differentiable at $x \neq 0$.

$$
\begin{array}{r}
g^{\prime}(x)=\left\{\begin{array}{rr}
1, & x>0 \\
-1, & x<0
\end{array}\right. \\
\therefore \quad F \because x \neq 0, \quad g^{\prime}(x)=\operatorname{sgn}(x)
\end{array}
$$

(but $g^{\prime} \neq$ san at $x=0$, because $g^{\prime}(0)$ doesn't exist)
Therefore, by chain rule,
$|f|(x)$ is differentiable at x where $f(x) \neq 0$
and $\quad|f|^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)=\operatorname{sgn}(f(x)) f^{\prime}(x)$

$$
= \begin{cases}f^{\prime}(x), & f(x)>0 \\ -f^{\prime}(x), & f^{\prime}(x)<0\end{cases}
$$

(At x where $f(x)=0$, the situation is more complicated:
(i) if $f(x)=x^{2}$, thee $|f|(x)=x^{2}$ is differentiable abo at $x=0$
(II) if $f(x)=x$, then $|f|(x)=|x|$ is not differentiable at $x=0$ See exercise 7 of $\$ 6.1$ an page 171 of the textbook.)

Concrete excmuple: $f(x)=x^{2}-1$, then $f(x)=0 \Leftrightarrow x= \pm 1$.
$\therefore \quad|f|(x)=\left|x^{2}-1\right|$ is differatialle $f a x \neq \pm 1$ and

$$
\frac{d}{d x}\left|x^{2}-1\right|=\left\lvert\, f^{\prime}(x)=\operatorname{sgn}\left(x^{2}-1\right) \cdot 2 x=\left\{\begin{array}{l}
2 x, \text { if } x<-1 a x>1 \\
-2 x, \text { if }-1<x<1
\end{array}\right.\right.
$$

(d) Derivatives of trigonometric functions.

Let $S(x)=\sin x, C(x)=\cos x$ for $x \in \mathbb{R}$.
Weill dofare these two functions and prove the following
later in section 8.4:

$$
s^{\prime}(x)=\cos x=C(x), \quad c^{\prime}(x)=-\sin x=-s(x) .
$$

Using these facts \& quotent rule, we have the fumula fa derivations of other trigonometric functions:

$$
\left.\begin{array}{l}
D \tan x=(\sec x)^{2} \\
D \sec x=(\sec x)(\tan x)
\end{array}\right\} \quad \text { for } x \neq \frac{(2 k+1) \pi}{2}, b \in \mathbb{Z}
$$

$$
\left.\begin{array}{l}
D \cot x=-(\operatorname{coc} x)^{2} \\
D(\operatorname{scc} x=-(\operatorname{coc} x)(\cot x)
\end{array}\right\} \quad \text { for } x \neq k \pi, k \in \mathbb{Z}
$$

(e) $f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { for } x \neq 0 \\ 0 & \text { fo } x=0 .\end{cases}$

By Chain rule, (product rule \& quotient rule,) for $x \neq 0$

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right) \quad(\text { check !) }
$$

But at $x=0$, we must use defierifion of derivative to find $f^{\prime}(0)=\lim _{\substack{x \rightarrow 0 \\(x \neq 0)}} \frac{f(x)-f(0)}{x-0}=\lim _{\substack{x \rightarrow 0 \\(x \neq 0)}} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=\lim _{\substack{x \rightarrow 0 \\(x \neq 0)}} x \sin \frac{1}{x}=0$
$\therefore f^{\prime}(x)$ exists for all $x \in \mathbb{R}$ and

$$
f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}
$$

(Note $=$ However, $f^{\prime}(x)$ is discontiounoss at $x=0$
as $\lim _{\substack{x \rightarrow 0 \\(x \neq 0)}}\left(2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)\right)$ doesn't exiats. (chock)
$\therefore f$ differentiable $\forall x \nRightarrow f^{\prime}$ is contūuons.

Inverse function

Thm6.1.8 Let $\quad I \subseteq \mathbb{R}$ be an interval

- $f: I \rightarrow \mathbb{R}$ be strictly monotone and continuous.
- $J=f(I)$ and $g: J \rightarrow \mathbb{R}$ be the strictly monotone \& contiunas function inverse to f.

If f is differentiable at $c \in I$ and $f^{\prime}(c) \neq 0$, then g is differentiable at $d=f(c)$ and

$$
g^{\prime}(d)=\frac{1}{f^{\prime}(c)}=\frac{1}{f^{\prime}(g(d))}
$$

Note $f^{\prime}(c) \neq 0$ doesn't foll no from f being strictly monotone: eg. $f(x)=x^{3}$ io strictly monotone, but $f^{\prime}(0)=0$. In this case, the inverse $g(x)=x^{1 / 3}$ is not differentiable at $x=0$.

Pf: Since f is differentiable at $x=c$, Carathéodory's Thu 6.1.5
$\Rightarrow \exists \varphi: I \rightarrow \mathbb{R}$ with φ continues at c such that

$$
\left\{\begin{array}{l}
f(x)-f(c)=\varphi(x)(x-c), \forall x \in I, \quad \text { and } \\
\varphi(c)=f^{\prime}(c)
\end{array}\right.
$$

Since $f^{\prime}(c) \neq 0$ and φ is continuous at $c, \exists \delta>0$ such that

$$
\varphi(x) \neq 0, \quad \forall x \in(c-\delta, c+\delta) \cap I .
$$

Let $U=f((c-\delta, c+\delta) \cap I) c J$
Then the inverse function g satisfies $f(g(y))=y, \forall y \in \mathcal{V}$.
Hence

$$
\begin{aligned}
y-d & =f(g(y))-f(c)=\varphi(g(y))(g(y)-c) \\
& =\varphi(g(y))(g(y)-g(d)) \quad\binom{d=f(c) \in V}{\Rightarrow c=g(d)}
\end{aligned}
$$

Since $g(y) \in((-\delta, c+\delta) \wedge I, \forall y \in U$,
we have $\varphi(g(y)) \neq 0$.
Hence $\quad g(y)-g(d)=\frac{1}{\varphi(g(y))}(y-d)$.
Since g is contūucos on J and φ is contürus at $c=g(d) \& \neq 0$, $1 / \varphi \circ g$ is continuous at d.

Then by Carathéodory's Thu 6.1.5, g is differentiable at $d=f(c)$ and $\quad g^{\prime}(d)=\frac{1}{\varphi(g(d))}=\frac{1}{\varphi(c)}=\frac{1}{f^{\prime}(c)}$.

