eg 6.1.7 lat
$$f: I \ge \mathbb{R}$$
 is differentiable on I (ie at all paids of I)
(a) Chain rule (abo) \Rightarrow (f^{n})(x) = n ($f(x)$)ⁿ⁻¹ $f(x)$
(b) If further assume $f(x) \neq 0$, $\forall x \in I$, (middle in textbook, $f(x) = -\frac{f(x)}{(f(x))^{2}}$, $\forall x \in I$
by using $g(y) = \frac{1}{y}$ for $y \neq 0$ and $g(y) = -\frac{1}{y^{2}}$, $\forall y \neq 0$.
(c) $IfI(x) = sgn(f(x)) \cdot f(x) = \begin{cases} f(x) , & y \neq f(x) > 0 \\ -f(x) , & y \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -f(x) , & y \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -f(x) , & y \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -f(x) & x \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -f(x) & x \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -f(x) & y \neq f(x) < 0 \end{cases}$
(where $sgn(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$
(where $f(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$
($sg(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$
($but g' \neq agn at x = 0$, because $g(0)$ doesn't exist))
Therefore, by chain rule,
 $IfI(x)$ is differentiable at x where $f(x) \neq 0$

and
$$|f_1(x) = g'(f(x)) f(x) = Agn(f(x)) f(x)$$

 $= \begin{cases} f(x), f(x) > 0 \\ -f'(x), f'(x) < 0 \end{cases}$
At x where $f(x)=0$, the situation is more complicated:
(i) if $f(x)=x^2$, then $|f_1(x)=x^2$ is differentiable also at $x=0$
(ii) if $f(x)=x^2$, then $|f_1(x)=|x|$ is not differentiable at $x=0$
(ii) if $f(x)=x$, then $|f_1(x)=|x|$ is not differentiable at $x=0$
See exercise 7 of \$6.1 or page 171 of the text book.)

Concrete example:
$$f(x) = x^2 - i$$
, then $f(x) = 0 \Leftrightarrow x = \pm 1$.
.:. $|f|(x) = |x^2 - i|$ is differentiable for $x \neq \pm 1$ and

$$\frac{d}{dx}|x^{2}-1| = |f|(x) = Agh(x^{2}-1) \cdot 2x = \begin{cases} 2x & i \\ -2x & i \\ -2x & i \\ -2x & -1 \\ -2x &$$

(d) Derivatives of trigonometric functions.

Let $S(X) = A \tilde{u} X$, C(X) = Co X for $X \in \mathbb{R}$. We'll define these two functions and prove the following

later in section 8.4:

$$S'(x) = coox = C(x), \quad C'(x) = -ainx = -S(x),$$

Using these facts & quotent rule, we have the funnela for derivatives of other trigonometric functions:

$$D \tan x = (\operatorname{ALCX})^{2} \qquad \text{for } X \neq \frac{(2k+1)T}{2}, \ k\in\mathbb{Z}$$

$$D \operatorname{ALCX} = (\operatorname{ALCX})(\tan X) \qquad \text{for } X \neq \frac{(2k+1)T}{2}, \ k\in\mathbb{Z}$$

$$D \cot x = -(CACX)^2$$

 $D \csc x = -(CACX)(\cot x)$
for $x \neq k\pi$, $k \in \mathbb{Z}$

(e)
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{fn } x \neq 0 \\ 0 & \text{fn } x = 0 \end{cases}$$

By Chain rule, (product rule & quotient rule,) for $x \neq 0$
 $f'(x) = 2x \sin(\frac{1}{x}) - \cos(\frac{1}{x})$ (check!)
But at $x = 0$, we must use definition of derivative to
find $f'(0) = \lim_{\substack{x \ge 0 \\ (x \neq 0)}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \ge 0 \\ (x \neq 0)}} \frac{x^2 \sin(\frac{1}{x})}{x} = \lim_{\substack{x \ge 0 \\ (x \neq 0)}} x \sin\frac{1}{x} = 0$
 $f'(x)$ exists for all $x \in \mathbb{R}$ and

$$f(x) = \begin{cases} 2x \operatorname{au}(x) - \cos(x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$(\operatorname{Note} : \operatorname{However}, f(x) \stackrel{\frown}{\otimes} \underbrace{\operatorname{discuttures}}_{X \neq 0} \operatorname{at} x = 0$$

$$\operatorname{As} \quad \underset{(x \neq 0)}{\overset{i}{x \neq 0}} (2x \operatorname{au}(x) - \operatorname{co}(x)) \operatorname{doesn't exist} (\operatorname{check})$$

$$\therefore \int \operatorname{differediable} \forall x \not \Rightarrow f \stackrel{\frown}{\otimes} \operatorname{catures} .)$$

$$\overset{y=x^{2}}{\xrightarrow{y=x^{2}}}$$

Thm 6.1.8 Let
$$\cdot I \subseteq \mathbb{R}$$
 be an interval
 $\cdot f: I \Rightarrow \mathbb{R}$ be strictly monotone and continuous.
 $\cdot J = f(I)$ and $g: J \Rightarrow \mathbb{R}$ be the strictly
monotone & continuous function inverse to f .
If f is differentiable at $C \in I$ and $f'(C) \neq 0$, then g is
differentiable at $d = f(C)$ and
 $g'(d) = \frac{1}{f'(C)} = \frac{1}{f'(g(d))}$

$$\frac{\text{Note} \quad f'(c) \neq 0 \quad \text{doesn't follow from } f \text{ being } \underline{\text{structly monotone}}:}{\text{eg.} \quad f(x) = x^3 \quad \text{is structly monotone, but } f'(o) = 0.$$

In this case, the inverse $g(x) = x^{\frac{1}{3}} \quad \text{is not differentiable at } x=0.$

Pf: Since f is differentiable at x=c, Carathéodory's Thur 6.1.5
⇒
$$\exists \varphi: I \Rightarrow R$$
 with φ continuous at c such that
 $\int f(x) - f(c) = \varphi(x)(x-c)$, $\forall x \in I$, and
 $\varphi(c) = f'(c)$

Since $f(c) \neq 0$ and q is continuous at c, $\exists \delta s o$ such that $q(x) \neq 0$, $\forall x \in (c-\delta, c+\delta) \cap I$.

let
$$U = \int ((c-\overline{\sigma}, c+\overline{\sigma}) \cap I) \subset J$$

Then the inverse function g satisfies $f(g(y)) = y$, $\forall y \in U$.
Hence $y - d = \int (g(y)) - f(c) = \varphi(g(y)) (g(y) - c)$
 $= \varphi(g(y)) (g(y) - g(d)) \qquad \begin{pmatrix} d = f(c) \\ = c = g(d) \end{pmatrix}$
Since $g(y) \in ((-\overline{\sigma}, c+\overline{\sigma}) \cap I, \forall y \in U)$,
we have $\varphi(g(y)) \neq 0$.
Hence $g(y) - g(d) = \frac{1}{\varphi(g(y))} (y - d)$.
Since g is continuous on J and φ is continuous at $c = g(d) \notin = 0$,
 $\frac{1}{\varphi_{0}g}$ is continuous at d .
Then by Carathéodory's Thu 6.1.5, g is differentiable at $d = f(c)$
and $g'(d) = \frac{1}{\varphi(g(u))} = \frac{1}{\varphi(c)} = \frac{1}{f'(c)} \cdot \chi$