Ch 6 Differentiation
§6.1 The Derivative

Def 6.1.1. Let. $I \subseteq \mathbb{R}$ be an interval

- $f: I \rightarrow \mathbb{R}$ a function on I
- $c \in I$.

We say that $L \in \mathbb{R}$ is the derivative of f at c if $\forall \varepsilon>0, \exists \delta(\varepsilon)>0$ such that

$$
\left|\frac{f(x)-f(c)}{x-c}-L\right|<\varepsilon, \quad \forall x \in I \text { with } 0<|x-c|<\delta(\varepsilon) \text {. }
$$

- In this cause we say that f is differentiable atc, and we write $f^{\prime}(c)$ for L.

Remark: If limit exists, $f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$

- c may be the endpoint of I (if I is "closed" at c) then $\lim _{x \rightarrow c}$ means $\lim _{\substack{x \rightarrow c \\ x \in I}}$
- f^{\prime} defines a function whose domain is a subset of I.
eg $f:(-\infty, \infty) \rightarrow \mathbb{R}$

$$
\begin{gathered}
\stackrel{\psi}{u} \\
x \longmapsto
\end{gathered}
$$

Then $f^{\prime}:(-\infty, 0) \cup(0, \infty) \rightarrow \mathbb{R}$ given by

$$
f^{\prime}(x)= \begin{cases}1, & x \in(0, \infty) \\ -1, & x \in(-\infty, 0)\end{cases}
$$

and
$f^{\prime}(0)$ doesn't exist (ie. $|x|$ is not differentiable at $x=0$)
Pf: $F_{n} c>0$, then

$$
\begin{aligned}
\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{|x|-|c|}{x-c}= & \lim _{x \rightarrow c} \frac{x-c}{x-c} \\
=\lim _{x \rightarrow c} 1=1 \quad & \binom{\text { as } x>0}{\text { near } c>0}
\end{aligned}
$$

Fin $c<0$, then

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c} \frac{|x|-|c|}{x-c}=\lim _{x \rightarrow c} \frac{-x+c}{x-c} \\
& =\lim _{x \rightarrow c}-1=-1 \quad\binom{\text { as } x<0}{\text { near } c<0}
\end{aligned}
$$

For $c=0$, then

$$
\lim _{\substack{x \rightarrow 0 \\(x \neq 0)}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow 0} \frac{|x|}{x} \text { doesn't expat }
$$

since the two one-sided limits are not equal:

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=-1 \neq 1=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}
$$

Note: The same argument show that f for $f(x)=x, x \in \mathbb{R}$, f is differentiable $\forall x \in \mathbb{R}$ and

$$
f^{\prime}(x)=1, \quad \forall x \in \mathbb{R} .
$$

The 6.1.2 (Same notations as in Ref 6.1.1)
If $f: I \rightarrow \mathbb{R}$ has a derivative at $c \in I$ (ie. differentiable atc), then f is continuous at c.

Pf: $F a \quad x \in I$ \& $x \neq C$, we have

$$
\begin{aligned}
f(x)-f(c) & =\frac{f(x)-f(c)}{x-c} \cdot(x-c) \\
f^{\prime}(c) \text { exists } \Rightarrow \lim _{\substack{x \rightarrow c \\
(x \neq c)}}(f(x)-f(c)) & =\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c) \\
& =f^{\prime}(c) \cdot 0=0
\end{aligned}
$$

Hence $\lim _{x \rightarrow c} f(x)=f(c) \therefore f$ is continuous at c.

Remarks: - Previous eg $f(x)=|x|$ clearly shows that the converse of Thumb. 1.2 is not true (ie. continuous at $\subset \nRightarrow \Rightarrow$ differentiable at c)

- In fact, there exist contiunons but nowhere differentiable functions. (will be proved in MATH 3060 .)

Thu 6.1.3 (Same notations as in Ref.6.1.1)
Let $f: I \rightarrow \mathbb{R}$ \& $g=I \rightarrow \mathbb{R}$ be functions that are differentiable at $c \in I$. Then
(a) If $\alpha \in \mathbb{R}$, the function αf is also differentiable at c, and

$$
(\alpha f)^{\prime}(c)=\alpha f^{\prime}(c)
$$

(b) The function $f+g$ is differentiable at c, and

$$
(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)
$$

(c) (Product Rule) The function $f g$ is differentiable at c, and

$$
(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
$$

(d) Quotient Rule) If $g(c) \neq 0$, then the function $\frac{f}{g}$ is differentiable at c, and

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}
$$

(Ifs are easy, just using suitable algebraic expressions and taking limits, we just do the Quotient Rule here as example, you should do others by yourself.)

Pf of (d) :

- Thu 6.1.2 implies that g is contūuors at c (as g is diff. at c)
- Then $g(c) \neq 0 \Rightarrow$ there exits an interval $J \leq I$ with $c \in J$ such that $g(x) \neq 0, \forall x \in J$.
(Thm 4.2 .9 of the text book, MATHZO5O)
- $q=\frac{f}{g}$ is well-defined function on J and $\forall x \in J, \quad x \neq c$, we have

$$
\begin{aligned}
\frac{q(x)-g(c)}{x-c} & =\frac{\frac{f(x)}{g(x)}-\frac{f(c)}{g(c)}}{x-c}=\frac{f(x) g(c)-f(c) g(x)}{g(x) g(c)(x-c)} \\
& =\frac{(f(x)-f(c)) g(c)-f(c)(g(x)-g(c))}{g(x) g(c)(x-c)} \\
& =\frac{1}{g(x) g(c)} \cdot\left[\frac{f(x)-f(c)}{x-c} \cdot g(c)-f(c) \cdot \frac{g(x)-g(c)}{x-c}\right]
\end{aligned}
$$

$$
\begin{aligned}
f, g \text { differentiable at } c \Rightarrow & \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=f^{\prime}(c) \\
& \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=g^{\prime}(c) \\
& \lim _{x \rightarrow c} g(x)=g(c)(\neq 0)
\end{aligned}
$$

$\therefore \lim _{x \rightarrow c} \frac{q(x)-q(c)}{x-c}$ exists and

$$
q^{\prime}(c)=\frac{1}{g(c)^{2}}\left[f^{\prime}(c) g(c)-f(c) g^{\prime}(c)\right]_{\forall}
$$

Cor 6.1.4 If f_{1}, \cdots, f_{n} are functions on an interval I to \mathbb{R} that are differentiable at $c \in I$, then
(a) The function $f_{1}+\cdots+f_{n}$ is differentiable at c, and

$$
\left(f_{1}+\cdots+f_{n}\right)^{\prime}(c)=f_{1}^{\prime}(c)+\cdots+f_{n}^{\prime}(c)
$$

(b) The function $f_{1} \ldots f_{n}$ is differentiable at c, and

$$
\begin{gathered}
\left(f_{1} \cdots f_{n}\right)^{\prime}(c)=f_{1}^{\prime}(c) f_{2}(c) \cdots f_{n}(c)+f_{1}(c) f_{2}^{\prime}(c) \cdots f_{n}(c) \\
+\cdots+f_{1}(c) f_{2}(c) \cdots f_{n}^{\prime}(c)
\end{gathered}
$$

Pf: Just by induction using The 6.1.3. *
Remark: Quotient rule (Thm6.1.3(d)) together with (b) in $\operatorname{Cor} 6.1 .4$

$$
\Rightarrow\left(x^{n}\right)^{\prime}=n x^{n-1}, \forall n \in \mathbb{Z} \quad(\forall x \neq 0 \text { if } n<0)
$$

Pf: Applying (b) in Corb.14 to the case that

$$
f_{1}=\cdots=f_{n}=f \quad \text { (differentiable) }
$$

$$
=n f^{n-1} f^{\prime}
$$

We've proved that $(x)^{\prime}=1$, and hance

$$
\left(x^{n}\right)^{\prime}=n \cdot x^{n-1} \cdot 1=n x^{n-1}
$$

If $n=0$, then $f(x)=x^{0} \equiv 1 \Rightarrow f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=0, \forall c$

$$
\therefore\left(x^{0}\right)^{\prime} \equiv 0 \equiv 0 \cdot x^{-1}
$$

(Note: strictly speaking, the RUtS is not defined at $x=0$, but we may interpret the expression $n x^{n-1}$ for $n=0$ as the contimuras extension to the whole \mathbb{R})

If $n=-m<0 \quad(m>0)$, then for $x \neq 0$,
$\left(x^{n}\right)^{\prime}=\left(\frac{1}{x^{m}}\right)^{\prime}=-\frac{\left(x^{m}\right)^{\prime}}{\left(x^{m}\right)^{2}}$ by Quotient rule

$$
=-\frac{m x^{m-1}}{\left(x^{m}\right)^{2}}=(-m) \cdot x^{(-m)-1}=n x^{n-1} \quad(f a x \neq 0)
$$

Chain Rule
Thu 6.1.5 (Carathéodory's Thu) (Same notations as in Def 6.1.1) f is differentiable at c
$\Leftrightarrow \exists \varphi: I \rightarrow \mathbb{R}$ contünows at c such that

$$
f(x)-f(c)=\varphi(x)(x-c), \quad \forall x \in I .
$$

In this case, $\varphi(c)=f^{\prime}(c)$
Pf: (\Rightarrow) If $f^{\prime}(c)$ exists, define $\varphi: I \rightarrow \mathbb{R}$ by

$$
\varphi(x)= \begin{cases}\frac{f(x)-f(c)}{x-c}, & x \neq c, \\ f^{\prime}(c), & x=c .\end{cases}
$$

Then $f^{\prime}(c)$ exists \Rightarrow

$$
\lim _{\substack{x \rightarrow c \\(x \neq c)}}(\varphi(x)-\varphi(c))=\lim _{x \rightarrow c}\left(\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right)=0
$$

$\therefore 9$ is continues at c.
And clearly $f(x)-f(c)=\varphi(x)(x-c) \quad f u x \neq c$, which is also true trivially at $x=C$ since both sides equal zero.
(\Leftarrow) If $\exists \varphi: I \rightarrow \mathbb{R}$ continuous of C such that

$$
f(x)-f(c)=\varphi(x)(x-c), \quad \forall x \in I
$$

Then $f a x \neq c, \quad \frac{f(x)-f(c)}{x-c}=\varphi(x) \rightarrow \varphi(c)$ as $x \rightarrow c$

$$
\therefore f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \text { exists } \&=\varphi(c) .
$$

*

eg: $f(x)=x^{3}:(-\infty, \infty) \rightarrow \mathbb{R}$
Then $\quad f(x)-f(c)=x^{3}-c^{3}=\left(x^{2}+c x+c^{2}\right)(x-c)$

$$
=\varphi(x)(x-c)
$$

where $\varphi(x)=x^{2}+c x+c^{2}$ is continuas at c and

$$
\varphi(c)=3 c^{2}=f^{\prime}(c)
$$

Tm 6.1.6 (Chair Rule)
Let $\cdot I, J$ be intervals in \mathbb{R},

- $g: I \rightarrow \mathbb{R}$
- $f: J \rightarrow \mathbb{R}$ with $f(J) \subseteq I$ (may just assume $f: J \rightarrow I$)
- $c \in J$.

If f is differentiable at c and g is differentiable at $f(c)$, then the composite function $g \circ f$ is differentiable at c and

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) f^{\prime}(c) .
$$

Other notations fa f^{\prime} : If $a \frac{d f}{d x}$ (when xis the indep. roniade)

The fanmula can be whiten as $(g \circ f)^{\prime}=\left(g^{\prime} \circ f\right) \cdot f^{\prime}$ or

$$
D(g \circ f)=(D g \circ f) \cdot D f
$$

Pf: Since $f^{\prime}(c)$ exists, Carathéodory's Thu 6.1.5
$\Rightarrow \exists \varphi=J \rightarrow \mathbb{R}$ contmunus at C such that

$$
f(x)-f(c)=\varphi(x)(x-c), \quad \forall x \in J
$$

and $\varphi(c)=f^{\prime}(c)$.
Denote $f(c)=d$, then $g^{\prime}(d)$ exists (similarly reasoning)
$\Rightarrow I \Psi=I \rightarrow \mathbb{R}$ continuous at d such that

$$
g(y)-g(d)=\psi(y)(y-d) \quad \forall y \in I
$$

and $\psi(d)=g^{\prime}(d)$.
Fa $x \in J$, substituting $y=f(x)$ \& $d=f(c)$, we have

$$
\begin{aligned}
g(f(x))-g(f(c)) & =\psi(f(x))(f(x)-f(c)) \\
\therefore \quad g \circ f(x)-g \circ f(c) & =\psi(f(x)) \varphi(x)(x-c) \\
& =[(\psi \circ f)(x) \varphi(x)](x-c), \forall x \in J
\end{aligned}
$$

Since f diff. at c, f is contünors at c.
Together with ψ is continues at $f(c)=d$, we have ψ of is contains at c.
Therefor $(\psi \circ f)(x) \varphi(x)$ is containers atc (as φ is continue atc)
\therefore got is differentiable at c by Carathéodory's Thur

$$
\text { and }(g \circ f)^{\prime}(c)=(\psi \circ f)(c) \varphi(c)=\psi(d) f^{\prime}(c)=g^{\prime}(d) f^{\prime}(c)
$$

$$
=g^{\prime}(f(c)) f^{\prime}(c)
$$

Note: By using Carathéodoy's Thu 6.1.5, we avoided the discussion of whether $f(x)-f(c)=0$ as in the usual proof by the algebraic expression

$$
\frac{g(f(x))-g(f(c))}{x-c}=\frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \frac{f(x)-f(c)}{x-c}
$$

