\$6.1 The Derivative

Def 6.1.1 • Let •
$$T \subseteq \mathbb{R}$$
 be an interval
• $f: T \Rightarrow \mathbb{R}$ a function on T
• $c \in T$.
We say that $L \in \mathbb{R}$ is the derivative of f atc
if $\forall \epsilon > 0$, $\exists \delta(\epsilon) > 0$ such that
 $\left| \frac{f(k) - f(c)}{x - c} - L \right| < \epsilon$, $\forall x \in I$ with $0 < |x - c| < \delta(\epsilon)$.
• In this case we say that f is differentiable atc, and
we write $\frac{f(c)}{x - c} = L$.

Remark: If limit exists, $f(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c}$

• c may be the endpoint of
$$I(if I is closed "at c)$$

then line means $\lim_{X \to C} \lim_{X \to C} \lim_{X \to C} \sum_{X \in I}$

• 5' defines a function whose domain is a subset of I.

eg f: (-o, o)
$$\rightarrow \mathbb{R}$$

 $x \mapsto f(x) = |x|$
Then f': (-o, o) $\cup (0, \infty) \rightarrow \mathbb{R}$ given by
 $f(x) = \begin{cases} 1 & x \in (0, \infty) \\ -1 & x \in (-\infty, \infty) \end{cases}$
 $f(x) = \begin{cases} 1 & x \in (0, \infty) \\ -1 & x \in (-\infty, \infty) \end{cases}$
 $f(x) = \begin{cases} 1 & x \in (0, \infty) \\ -1 & x \in (-\infty, \infty) \end{cases}$
 $f(x) = \begin{cases} 1 & x \in (0, \infty) \\ -1 & x \in (-\infty, \infty) \end{cases}$
 $f(x) = \begin{cases} 1 & x \in (0, \infty) \\ -1 & x \in (-\infty, \infty) \end{cases}$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x| - |x||) = lin (|x - x| - x|)$
 $f(x) = f(x) - f(x) = lin (|x||) = lin (|x||)$

Ħ

<u>Note</u>: The same argument show that for f(x) = x, $x \in \mathbb{R}$, f is differentiable $\forall x \in \mathbb{R}$ and f'(x) = 1, $\forall x \in \mathbb{R}$.

Thm 6.1.2 (Same notations as in Ref 6.1.1)
If
$$f: I \rightarrow R$$
 that a derivative at $C \in I$ (i.e. differentiable at c),
then f is cartinuous at C .

$$\frac{Pf}{f(c) \text{ sxist}} \Rightarrow \sum_{\substack{x \neq c \\ x \neq c}} we have$$

$$f(c) = \frac{f(x) - f(c)}{x - c} \cdot (x - c)$$

$$f(c) = \lim_{\substack{x \neq c}} (f(x) - f(c)) = \lim_{\substack{x \neq c}} \frac{f(x) - f(c)}{x - c} \cdot \lim_{\substack{x \neq c}} (x - c)$$

$$= f(c) \cdot 0 = 0$$

Hence $\lim_{X \to c} f(x) = f(c) \quad \therefore f$ is continuous at c .

In fact, there exist <u>continuous but nowhere differentiable</u> functions
 (will be proved in MATTH 3060.)

Thm 6.1.3 (Same notations as in Def. 6.1,1)
Let
$$f: I \Rightarrow \mathbb{R} \ge g: I \Rightarrow \mathbb{R}$$
 be functions that are differentiable
at CEI. Then
(a) If dETR, the function of is also differentiable at c, and
(α f)'(c) = df(c)
(b) The function $f: g$ is differentiable at c, and
($f: f: g$)'(c) = $f'(c) + g'(c)$
(c) (Product Rule) The function $f: g$ is differentiable at c, and
($f: g$)'(c) = $f'(c) g(c) + f(c) g'(c)$
(d) (Quotient Rule) If $g(c)=0$, then the function $f': g$ is
differentiable at c, and
($f: g$)'(c) = $\frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$

(Pfs are easy, just using suitable algebraic expressions and taking limits, we just do the <u>Quotient Rule</u> here as example, you should do others by yourself.)

Cor 6.1.4 If
$$f_1, \dots, f_n$$
 are functions on an interval I to R
that are differentiable at $c \in I$, then
(a) The function $f_1 + \dots + f_n$ is differentiable at c , and
 $(f_1 + \dots + f_n)(c) = f'_1(c) + \dots + f'_n(c)$
(b) The function $f_1 \cdots f_n$ is differentiable at c , and
 $(f_1 \dots f_n)(c) = f'_1(c)f_2(c) \dots f_n(c) + f'_1(c)f'_2(c) \dots f'_n(c)$
 $+ \dots + f'_1(c)f'_2(c) \dots f'_n(c)$

PS = Just by induction using Thm 6.1.3. *

<u>Remark</u>: Quotient rule (Thur 6.1.3(d)) togetter with (b) in Gr6.1.4 \Rightarrow $(x^n)' = nx^{n-1}$, $\forall n \in \mathbb{Z}$ ($\forall x \neq 0$ if n < 0)

<u>Pf</u>: Applying (b) in Cor6.14 to the case that $f_1 = \dots = f_n = f$ (differentiable),

then
$$(f^n)' = (f \cdots f)' = f' f \cdots f + f f' \cdot f + \cdots + f \cdot f \cdot f'$$

 $(f a N \ge 1)$

$$= n f^{n-1} f'.$$

We've proved that (X)' = 1, and have $(X^n)' = n \cdot X^{n-1} \cdot 1 = n \cdot x^{n-1}$

If
$$n=0$$
, then $f(x) = x^{\circ} = 1 \Rightarrow f'(c) = \lim_{X \to c} \frac{f(x) - f(c)}{x - c} = 0$, $\forall c$
 $\vdots, (x^{\circ}) = 0 = 0 \cdot x^{-1}$

(Note: strictly speaking, the RHS is not defined at
$$x=0$$
, but we may interpret the expression nx^{n-1} for $n=0$ as the continuous extension to the whole \mathbb{R})

If
$$n = -m < 0$$
 $(m > 0)$, then for $x \neq 0$,
 $(x^{n})' = (\frac{1}{x^{m}})' = -\frac{(x^{m})'}{(x^{m})^{2}}$ by Quotient rule
 $= -\frac{mx^{m-1}}{(x^{m})^{2}} = (-m) \cdot x^{(-m)-1} = n x^{n-1}$ $(for x \neq 0)$

$$Thm 6.1.5 (Carathéodory's Thm) (Same notations as in Def 6.1.1)
f is differentiable at c
$$\iff \exists \ \ensuremath{\mathbb{Q}} : I > \mathbb{R} \ \underline{cartinuous \ at \ c} \ \text{such that} \\
f(x) - f(c) = \ensuremath{\mathbb{Q}} (x - c), \ \forall x \in \mathbb{I}. \\
The this case, \ \ensuremath{\mathbb{Q}} (c) = f(c) \\
Pf: (=>) If \ f'(c) \ exists, \ define \ \ensuremath{\mathbb{Q}} : I > \mathbb{R} \ by \\
\ensuremath{\mathbb{Q}} (x) = \ensuremath{\mathbb{Q}} \ \frac{f(x) - f(c)}{x - c}, \ x \neq c, \ x \in \mathbb{I} \\
\ensuremath{\mathbb{Q}} (x) = \ensuremath{\mathbb{Q}} \ \frac{f(x) - f(c)}{x - c}, \ x = c.
\end{cases}$$$$

Then
$$f(r) exists \Rightarrow$$

$$\lim_{\substack{x \to c \\ (x + c)}} (\varphi(x) - \varphi(c)) = \lim_{\substack{x \to c \\ (x + c)}} \left(\frac{f(x) - f(c)}{x - c} - f(c) \right) = 0$$

$$\therefore \varphi \text{ is (artinuous at c.}$$
And clearly $f(x) - f(c) = \varphi(x)(x - c)$ for $x + c$,
which is also true trivially at $x = c$ since both sides
equal zero.
 (\neq) If $\exists \varphi: r \Rightarrow R$ continuous at c such that
 $f(x) - f(c) = \varphi(x)(x - c)$, $\forall x \in r$.
Then for $x + c$, $\frac{f(x) - f(c)}{x - c} = \varphi(x) \Rightarrow \varphi(c)$ as $x \Rightarrow c$
 $\therefore f(c) = \lim_{\substack{x \to c \\ x - c}} \frac{f(x) - f(c)}{x - c} = \varphi(c)$.

$$\frac{\varphi_{g}}{\varphi_{g}}: -f(x) = x^{3}: (-\infty, \infty) \to \mathbb{R}$$

Then $f(x) - f(c) = x^{3} - c^{3} = (x^{2} + cx + c^{2})(x - c)$
 $= \varphi(x)(x - c)$

where $Q(x) = x^2 + cx + c^2$ is cartinuous at c and $Q(c) = 3c^2 = f(c).$

Thm 6.1.6 (Chain Rule)
let
$$\cdot$$
 I, J be intervals in R,
 $\cdot g: I \rightarrow IR$
 $\cdot f: J \rightarrow IR$ with $f(J) \subseteq I$ (may just assume $f: J \rightarrow I$)
 $\cdot C \in J$.
If f is differentiable at c and g is differentiable at $f(c)$,
then the composite function gof is differentiable at c and
 $(g \circ f)(c) = g'(f(c)) f(c)$.
Other notations for $f' : Df$ or $\frac{df}{dx}$ (when x is the indep. nonidle)
The formula can be written as $(g \circ f)' = (g' \circ f) \cdot f'$ or
 $D(g \circ f) = (Dg \circ f) \cdot Df$

Pf: Since f(c) exists, Carathéodory's Thm 6.1.5 ⇒ ∃ 9: J → IR containous at c such that f(x) - f(c) = 9(x)(x-c), ∀ x ∈ J and 9(c) = f(c). Denote f(c) = d, then g(d) exists (similarly reasoning) ⇒ ∃ 4: I → IR containers at d such that

$$g(y) - g(d) = f(y)(y - d) \quad \forall y \in I$$

and $f(d) = g(d)$.
For xeJ, substituting $y = f(x) \geq d = f(c)$, we have
 $g(f(x)) - g(f(c)) = f(f(x))(f(x) - f(c))$
 $\therefore \quad g_0f(x) - g_0f(c) = f(f(x))\varphi(x)(x - c)$
 $= [[f_0f_1(x)\varphi(x)](x - c), \forall x \in J$
Since f diff. at c , f is contained at c .
Together with f is catained at $f(c) = d$, we have
 $f \circ f$ is contained at $f(c) = d$, we have
 $f \circ f$ is contained at c .
Therefore $(f \circ f)(x)\varphi(x)$ is contained at c .
Therefore $(f \circ f)(x)\varphi(x)$ is contained at c .
 $g \circ f$ is differentiable at c by Canathéodony's Thue
and $(g \circ f)'(c) = (f \circ f)(c)\varphi(c) = f(d)f(c) = g(d)f(c)$
 $= g(f(c))f(c) \cdot \bigotimes$

Note: By using Carathéodory's Thm 6.1.5, we avoided the discussion
of whether
$$f(x) - f(c) = 0$$
 as in the usual proof by
the algebraic expression
$$\frac{g(f(x)) - g(f(c))}{x - c} = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \cdot \frac{f(x) - f(c)}{x - c}$$