MATH2060AB Homework 7 Reference Solutions

7.4.12. Note that $f(x)=x^{2}$ is increasing on $[0,1]$. Then, for the uniform partition $\mathcal{P}_{n}=\left(0, \frac{1}{n}, \frac{2}{n}, \ldots, 1-\frac{1}{n}, 1\right)$, it holds that

$$
L\left(f ; \mathcal{P}_{n}\right)=\left(0^{2}+1^{2}+\cdots+(n-1)^{2}\right) / n^{3}=(n-1) n(2 n-1) / 6 n^{3}=\frac{1}{3}\left(1-\frac{1}{n}\right)\left(1-\frac{1}{2 n}\right)
$$

and

$$
U\left(f ; \mathcal{P}_{n}\right)=\left(1^{2}+2^{2}+\cdots+n^{2}\right) / n^{3}=n(n+1)(2 n+1) / 6 n^{3}=\frac{1}{3}\left(1+\frac{1}{n}\right)\left(1+\frac{1}{2 n}\right)
$$

Hence, $\lim _{n \rightarrow \infty} L\left(f ; \mathcal{P}_{n}\right)=1 / 3=\lim _{n \rightarrow \infty} U\left(f ; \mathcal{P}_{n}\right)$. Since $L\left(f ; \mathcal{P}_{n}\right) \leq L(f) \leq U(f) \leq U\left(f ; \mathcal{P}_{n}\right)$ for any $n \geq 1$, it follows that $L(f)=\stackrel{n \rightarrow \infty}{U(f)}=1 / 3$.
7.4.13. Let \mathcal{P}_{ϵ} be the partition such that $U\left(f ; \mathcal{P}_{\epsilon}\right)-L\left(f ; \mathcal{P}_{\epsilon}\right)<\epsilon$ as stated in Integrability Criterion. It follows from Lemma 7.4.2 that if \mathcal{P} is a refinement of \mathcal{P}_{ϵ}, then $L\left(f ; \mathcal{P}_{\epsilon}\right) \leq L(f ; \mathcal{P})$ and $U(f ; \mathcal{P}) \leq U\left(f ; \mathcal{P}_{\epsilon}\right)$, so that $U(f ; \mathcal{P})-L(f ; \mathcal{P}) \leq U\left(f ; \mathcal{P}_{\epsilon}\right)-L\left(f ; \mathcal{P}_{\epsilon}\right)<\epsilon$.
8.1.5. Denote $f_{n}(x)=\sin (n x) /(1+n x)$. If $x=0$ then $f_{n}(0)=0$ for all n and hence $f_{n}(0) \rightarrow 0$ as $n \rightarrow \infty$. If $x>0$, then $\left|f_{n}(x)\right| \leq 1 /(n x) \rightarrow 0$ and thus $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$. Hence, $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for $x \geq 0$.
8.1.7. Denote $g_{n}(x)=e^{-n x}$. If $x=0$ then $g_{n}(0)=1$ for all n and hence $g_{n}(0) \rightarrow 1$ as $n \rightarrow \infty$. If $x>0$, by the fact that $0<e^{-x}<1$, $\left|g_{n}(x)\right|=\left(e^{-x}\right)^{n} \rightarrow 0$ and hence $g_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$.
8.1.15. Denote $f_{n}(x)=\sin (n x) /(1+n x)$. For $\epsilon>0$, let $N:=[1 /(a \epsilon)]+1$. Then for $n>N$ and $x \geq a$, we have $\left|f_{n}(x)-0\right| \leq 1 /(a n)<\epsilon$. Hence, $\left(f_{n}\right)$ converges uniformly on $[a, \infty)$ to 0 .
Let $\epsilon_{0}=(\sin 1) / 2>0$, then for any $k \in N$, let $n_{k}=k$ and $x_{k}=1 / k \in[0, \infty)$, then $\left|f_{n_{k}}\left(x_{k}\right)-0\right|=(\sin 1) / 2=\epsilon_{0}$. Therefore, $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$ to 0 .
8.1.17. Denote $g_{n}(x)=e^{-n x}$. For $\epsilon>0$, let $N:=\left[a^{-1} \ln \epsilon^{-1}\right]+1$. Then for $n>N$ and $x \geq a$, we have $\left|g_{n}(x)-0\right|=e^{-n a}<\epsilon$. Hence, $\left(g_{n}\right)$ converges uniformly on $[a, \infty)$ to 0 .
Let $\epsilon_{0}=e^{-1}>0$, then for any $k \in N$, let $n_{k}=k$ and $x_{k}=1 / k \in[0, \infty)$, then $\left|g_{n_{k}}\left(x_{k}\right)-0\right|=e^{-1}=\epsilon_{0}$. Therefore, $\left(g_{n}\right)$ does not converge uniformly on $[0, \infty)$ to 0 .
8.1.20. Note that there exists a constant $C>0$ such that $0 \leq x^{3} e^{-x} \leq C$ for any $x \geq 0$. For $x \geq a>0$, we then have $n^{2} x^{2} e^{-n x}=$ $\frac{1}{n x} \cdot(n x)^{3} e^{-n x} \leq \frac{C}{n x} \leq \frac{C}{n a}$. For $\epsilon>0$, let $N:=[C /(a \epsilon)]+1$. Then for $n>N$ and $x \geq a$, we have $\left|n^{2} x^{2} e^{-n x}-0\right| \leq \frac{C}{n a}<\epsilon$. Hence, $\left(n^{2} x^{2} e^{-n x}\right)$ converges uniformly on $[a, \infty)$ to 0 .
Let $\epsilon_{0}=e^{-1}>0$, then for any $k \in N$, let $n_{k}=k$ and $x_{k}=1 / k \in[0, \infty)$, then $\left|n_{k}^{2} x_{k}^{2} e^{-n_{k} x_{k}}-0\right|=e^{-1}=\epsilon_{0}$. Therefore, $\left(n^{2} x^{2} e^{-n x}\right)$ does not converge uniformly on $[0, \infty)$ to 0 .

