MATH2060AB Homework 5 Reference Solutions

7.2.3. Let \dot{P}_{n} be the partition of [0,1] into n equal subintervals with $t_{1}=1 / n$ and \dot{L}_{n} be the same subintervals tagged by irrational points. Then $S\left(H ; \dot{P}_{n}\right) \geq 1>0=S\left(H ; \dot{L}_{n}\right)$. Hence, if H is Riemann integrable, then $\lim _{n \rightarrow \infty} S\left(H ; \dot{P}_{n}\right)=\lim _{n \rightarrow \infty} S\left(H ; \dot{L}_{n}\right)$, which is a contradiction.
7.2.5. Given any step function ϕ, we assume it takes distinct values c_{1}, \cdots, c_{n}, then $\phi^{-1}\left(c_{j}\right)$ is the union of a finite collection $\left\{J_{j 1}, \cdots, J_{j r_{j}}\right\}$ by the definition of step function. Then one can write

$$
\phi(x)=\sum_{j=1}^{n} \sum_{k=1}^{r_{j}} c_{j} \phi_{J_{j k}}(x)
$$

7.2.6. ψ might not be a step function. Let $x \in[0,1], \psi(x)=1$ for all the rational numbers in $[0,1]$ and $\psi(x)=0$ elsewhere. Then $\{x: \psi(x)=1\}$ cannot be written as finite union of subintervals of $[0,1]$ since for any $[a, b] \in\{x: \psi(x)=1\}$, then $a=b$, otherwise it contains irrational points which makes $\psi=0$, but there are infinite rational numbers in $[0,1]$.
7.2.10. Let $h=f-g$, then h is continuous on $[a, b]$ and $\int_{a}^{b} h=0$. If $h(a)=0$, then $f(a)=g(a)$, otherwise, without loss of generality we may assume $h(a)>0$. If there is no $c \in[a, b]$ such that $h(c)=0$, then by intermediate value theorem we have $h(x)>0$ for all $x \in[a, b]$, which yields $\int_{a}^{b} h>0$ (See the first claim in 7.2.17). Then there is some $c \in[a, b]$ such that $h(c)=0$, which gives $f(c)=g(c)$.
7.2.13. Let $f(x):=1 / x$ for $x \in(0,1]$ and $f(x):=0$. Then $f \in \mathcal{R}[c, 1]$ for every $c \in(0,1)$ but $f \notin \mathcal{R}[0,1]$ since f is not bounded.
7.2.15. Suppose $E=a=c_{0}<c_{1}<\cdots<c_{m}=b$, the case when $a \neq c_{0}$ or $b \neq c_{m}$ can be handled similarly. We first prove the restrictions of f to $\left[c_{i-1}, c_{i}\right]$ belong to $\mathcal{R}\left[c_{i-1}, c_{i}\right]$ for $i=1, \cdots, m$. By the continuity property of f, it is Riemann integrable on $[c, d]$ for $c_{i-1}<c<d<c_{i}$. Let f be bounded by M on $c_{i-1}<c<d<c_{i}, \alpha_{c}(x):=-M$ and $\omega_{c}(x):=M$ for $x \in\left[c_{i-1}, c\right) \cup\left(d, c_{i}\right]$ and $\alpha_{c}(x):=\omega_{c}(x):=f(x)$ for $x \in(c, d)$. Then Theorem 7.2 .9 implies $\alpha_{c}(x), \omega_{c}(x) \in \mathcal{R}\left[c_{i-1}, c_{i}\right]$. Moreover, $\int_{c_{i-1}}^{c_{i}}\left(\omega_{c}-\alpha_{c}\right)=$ $2 M\left(c_{i}-d+c-c_{i-1}\right)<\epsilon$ when $\max \left\{c_{i}-d, c-c_{i-1}\right\}<\epsilon / 4 M$. Then Theorem 7.2 .3 implies the restrictions of f to [$\left.c_{i-1}, c_{i}\right]$ belong to $\mathcal{R}\left[c_{i-1}, c_{i}\right]$ for $i=1, \cdots, m$. Hence, 7.2 .14 , which is a result by induction on Theorem 7.2 .9 where the proof is omitted here, implies f is Riemann integrable on $[a, b]$.
7.2.17. We first claim $\int_{a}^{b} g(x) d x>0$ since by continuity of g, there exists some $0<\delta<(a+b) / 4$ such that $g(x)>g((a+b) / 2)>0$ for $|x-(a+b) / 2| \leq \delta$. Then $\int_{a}^{b} g(x) d x \geq \int_{(a+b) / 2-\delta}^{(a+b) / 2+\delta} g(x) \geq 2 \delta g((a+b) / 2)>0$. Since f is continuous, there are constants m, M such that

$$
m \int_{a}^{b} g \leq \int_{a}^{b} f g \leq M \int_{a}^{b} g
$$

Then by Theorem 5.3.7, there exists $c \in[a, b]$ such that

$$
f(c)=\frac{\int_{a}^{b} f g}{\int_{a}^{b} g}
$$

If we do not have $g>0$, without loss of generality we assume $[a, b]=[-1,1]$, let $g(x)=x$ and $f(x)=x$, we have $\int_{-1}^{1} f g>0=$ $f(c) \int_{-1}^{1} g$, for any $c \in[-1,1]$.

