MATH2060AB Homework 5 Reference Solutions

- 7.2.3. Let \dot{P}_n be the partition of [0, 1] into n equal subintervals with $t_1 = 1/n$ and \dot{L}_n be the same subintervals tagged by irrational points. Then $S(H; \dot{P}_n) \ge 1 > 0 = S(H; \dot{L}_n)$. Hence, if H is Riemann integrable, then $\lim_{n\to\infty} S(H; \dot{P}_n) = \lim_{n\to\infty} S(H; \dot{L}_n)$, which is a contradiction.
- 7.2.5. Given any step function ϕ , we assume it takes distinct values c_1, \dots, c_n , then $\phi^{-1}(c_j)$ is the union of a finite collection $\{J_{j1}, \dots, J_{jr_j}\}$ by the definition of step function. Then one can write

$$\phi(x) = \sum_{j=1}^{n} \sum_{k=1}^{r_j} c_j \phi_{J_{jk}}(x).$$

- 7.2.6. ψ might not be a step function. Let $x \in [0, 1]$, $\psi(x) = 1$ for all the rational numbers in [0, 1] and $\psi(x) = 0$ elsewhere. Then $\{x : \psi(x) = 1\}$ cannot be written as finite union of subintervals of [0, 1] since for any $[a, b] \in \{x : \psi(x) = 1\}$, then a = b, otherwise it contains irrational points which makes $\psi = 0$, but there are infinite rational numbers in [0, 1].
- 7.2.10. Let h = f g, then h is continuous on [a, b] and $\int_a^b h = 0$. If h(a) = 0, then f(a) = g(a), otherwise, without loss of generality we may assume h(a) > 0. If there is no $c \in [a, b]$ such that h(c) = 0, then by intermediate value theorem we have h(x) > 0 for all $x \in [a, b]$, which yields $\int_a^b h > 0$ (See the first claim in 7.2.17). Then there is some $c \in [a, b]$ such that h(c) = 0, which gives f(c) = g(c).
- 7.2.13. Let f(x) := 1/x for $x \in (0,1]$ and f(x) := 0. Then $f \in \mathcal{R}[c,1]$ for every $c \in (0,1)$ but $f \notin \mathcal{R}[0,1]$ since f is not bounded.
- 7.2.15. Suppose $E = a = c_0 < c_1 < \cdots < c_m = b$, the case when $a \neq c_0$ or $b \neq c_m$ can be handled similarly. We first prove the restrictions of f to $[c_{i-1}, c_i]$ belong to $\mathcal{R}[c_{i-1}, c_i]$ for $i = 1, \cdots, m$. By the continuity property of f, it is Riemann integrable on [c, d] for $c_{i-1} < c < d < c_i$. Let f be bounded by M on $c_{i-1} < c < d < c_i$, $\alpha_c(x) := -M$ and $\omega_c(x) := M$ for $x \in [c_{i-1}, c) \cup (d, c_i]$ and $\alpha_c(x) := \omega_c(x) := f(x)$ for $x \in (c, d)$. Then Theorem 7.2.9 implies $\alpha_c(x), \omega_c(x) \in \mathcal{R}[c_{i-1}, c_i]$. Moreover, $\int_{c_{i-1}}^{c_i} (\omega_c \alpha_c) = 2M(c_i d + c c_{i-1}) < \epsilon$ when max $\{c_i d, c c_{i-1}\} < \epsilon/4M$. Then Theorem 7.2.3 implies the restrictions of f to $[c_{i-1}, c_i]$ belong to $\mathcal{R}[c_{i-1}, c_i]$ for $i = 1, \cdots, m$. Hence, 7.2.14, which is a result by induction on Theorem 7.2.9 where the proof is omitted here, implies f is Riemann integrable on [a, b].
- 7.2.17. We first claim $\int_a^b g(x)dx > 0$ since by continuity of g, there exists some $0 < \delta < (a+b)/4$ such that g(x) > g((a+b)/2) > 0 for $|x (a+b)/2| \le \delta$. Then $\int_a^b g(x)dx \ge \int_{(a+b)/2-\delta}^{(a+b)/2+\delta} g(x) \ge 2\delta g((a+b)/2) > 0$. Since f is continuous, there are constants m, M such that

$$m\int_{a}^{b}g \leq \int_{a}^{b}fg \leq M\int_{a}^{b}g$$

Then by Theorem 5.3.7, there exists $c \in [a, b]$ such that

$$f(c) = \frac{\int_{a}^{b} fg}{\int_{a}^{b} g}$$

If we do not have g > 0, without loss of generality we assume [a, b] = [-1, 1], let g(x) = x and f(x) = x, we have $\int_{-1}^{1} fg > 0 = f(c) \int_{-1}^{1} g$, for any $c \in [-1, 1]$.