MATH2060AB Homework 3 Reference Solutions

6.4.3. For convenience, denote

$$
C_{n}^{k}:=\binom{n}{k}
$$

When $n=0$, the equality obviously holds. By induction process, we assume

$$
(f g)^{(n)}(x)=\sum_{k=0}^{n} C_{n}^{k} f^{(n-k)}(x) g^{(k)}(x)
$$

for $n=m$. Then when $n=m+1$,

$$
\begin{aligned}
(f g)^{(m+1)}(x) & =\left((f g)^{(m)}(x)\right)^{\prime}=\left(\sum_{k=0}^{m} C_{m}^{k} f^{(m-k)}(x) g^{(k)}(x)\right)^{\prime} \\
& =\sum_{k=0}^{m} C_{m}^{k}\left(f^{(m+1-k)}(x) g^{(k)}(x)+f^{(m-k)}(x) g^{(k+1)}(x)\right) \\
& =f^{(m+1)}(x) g^{(0)}(x)+f^{(0)}(x) g^{(m+1)}(x)+\sum_{k=1}^{m}\left(C_{m}^{k}+C_{m}^{k-1}\right) f^{(m-k+1)}(x) g^{(k)}(x) \\
& =f^{(m+1)}(x) g^{(0)}(x)+f^{(0)}(x) g^{(m+1)}(x)+\sum_{k=1}^{m} C_{m+1}^{k} f^{(m-k+1)}(x) g^{(k)}(x) \\
& =\sum_{k=0}^{m+1} C_{m+1}^{k} f^{(m+1-k)}(x) g^{(k)}(x)
\end{aligned}
$$

6.4.7. Direct calculations by Taylor expansion show that $(1+x)^{\frac{1}{3}}=P_{2}(x)+R_{2}(x)$ where

$$
P_{2}(x)=1+\frac{1}{3} x-\frac{1}{9} x^{2}
$$

and

$$
R_{2}(x)=\frac{1}{6} \frac{10}{27}(1+\xi)^{-8 / 3} x^{3}<\frac{5}{81} x^{3}
$$

for some $0<\xi<x$. We let $x=0.2$ and $x=1$ respectively to get $\left|(1.2)^{\frac{1}{3}}-\frac{239}{225}\right|<\frac{1}{2025}$ and $\left|2^{\frac{1}{3}}-\frac{11}{9}\right|<\frac{5}{81}$.
6.4.8. For fixed x_{0}, x, we get by Taylor's Theorem that

$$
R_{n}(x)=\frac{1}{(n+1)!} e^{c}\left(x-x_{0}\right)^{n+1}
$$

for some c which is between x and x_{0}. Then

$$
\lim _{n \rightarrow \infty} R_{n}(x) \leq \lim _{n \rightarrow \infty}\left|\frac{1}{(n+1)!} e^{c}\left(x-x_{0}\right)^{n+1}\right| \leq \lim _{n \rightarrow \infty}\left|\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} e^{|x|+\left|x_{0}\right|}\right|=0
$$

6.4.12. We use Taylor's Theorem to expand $f(x)=\sin x$ and $x_{0}=0$ to get

$$
f(x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cos c \frac{x^{7}}{5040}
$$

for some c between x and 0 , which gives

$$
\left|\sin x-x+\frac{x^{3}}{6}-\frac{x^{5}}{120}\right| \leq \frac{1}{5040}
$$

since $\left|x^{7}\right| \leq 1,|\cos c| \leq 1$.
6.4.14. (a) We calculate directly to get $f^{\prime}(x)=3 x^{2}, f^{\prime \prime}(x)=6 x$ and $f^{\prime \prime \prime}(x)=6$. Then $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(0)>0$. Hence it is not a relative extremum.
(b) It holds that $g^{\prime}(x)=\cos x-1, g^{\prime \prime}(x)=-\sin x$ and $g^{\prime \prime \prime}(x)=-\cos x$. Then $g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=0$ and $g^{\prime \prime \prime}(0)<0$. Hence, it is not a relative extremum.
(c) It holds that $h^{\prime}(x)=\cos x+\frac{1}{2} x^{2} \cdot h^{\prime}(0)>0$. Hence, it is not a relative extremum.
(d) One has $k^{\prime}(x)=-\sin x+x, k^{\prime \prime}(x)=-\cos x+1, k^{\prime \prime \prime}(x)=\sin x$ and $k^{(4)}(x)=\cos x$. Then $k(0)=k^{\prime}(0)=k^{\prime \prime}(0)=k^{\prime \prime \prime}(0)=0$ and $k^{(4)}(0)>0 . x=0$ is a relative minimum point.
6.4.16. By L'Hospital's Rule,

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)-f^{\prime}(a-h)}{2 h}=\lim _{h \rightarrow 0}\left(\frac{1}{2} \frac{f^{\prime}(a+h)-f^{\prime}(h)}{h}+\frac{1}{2} \frac{f^{\prime}(h)-f^{\prime}(a-h)}{h}\right)=f^{\prime \prime}(a)
$$

Without loss of generality, we may assume $a=0$. Let $f(x)=x^{2}$ for $x \geq 0$ and $f(x)=-x^{2}$ for $x<0$. It is direct to see it is a counter-example.
6.4.23. We have $f^{\prime}(x)=24 x^{2}-16 x$. By direct calculations, one gets
(a)

$$
\begin{aligned}
& x_{1} \approx \frac{35}{52} \\
& \ldots \\
& x_{11} \approx 0.80901699
\end{aligned}
$$

(b)

$$
x_{1}=\frac{1}{2}
$$

which is indeed a root. Hence, the iteration stops.

