
MATH2060AB Homework 1

Reference Solutions

6.1.4. For any ϵ > 0, we let δ = ϵ such that for any rational 0 < |x− 0| < δ, it holds that

∣∣f(x)− f(0)

x− 0
− 0

∣∣ = ∣∣x2

x
− 0

∣∣ = |x| < δ.

For any irrational 0 < |x− 0| < δ, it holds that

∣∣f(x)− f(0)

x− 0
− 0

∣∣ = 0 < δ.

Hence, f is differentiable at x = 0 and f ′(0) = 0.

6.1.8. (a) f is differentiable for x ∈ (−∞,−1) ∪ (−1, 0) ∪ (0,∞). For x ∈ (−∞,−1) ∪ (−1, 0) ∪ (0,∞),

f ′(x) =


−2 if x ∈ (−∞,−1)

0 if x ∈ (−1, 0)

2 if x ∈ (0,∞).

(b) g is differentiable for x ∈ (−∞, 0) ∪ (0,∞). For x ∈ (−∞, 0) ∪ (0,∞),

g′(x) =

{
1 if x ∈ (−∞, 0)

3 if x ∈ (0,∞).

(c) h is differentiable for x ∈ R.

h′(x) =

{
−2x if x ∈ (−∞, 0]

2x if x ∈ (0,∞).

(d) k is differentiable for x ∈ ∪n∈Z(nπ, (n+ 1)π). For x ∈ (nπ, (n+ 1)π), n ∈ Z

k′(x) =

{
cosx if n is even

− cosx if n is odd.

6.1.10. Given any ϵ > 0, we let δ = ϵl to get that for 0 < |x| < δ,

∣∣g(x)− g(0)

x− 0

∣∣ = ∣∣x sin 1

x2

∣∣ < |x| < ϵ.

Hence, g is differentiable at x = 0 and g′(0) = 0. For any x0 ∈ (−∞, 0) ∪ (0,∞), 1
x2 and x2 are differentiable at x = x0 and

sin 1
x2 is differentiable at 1

x2
0
. Thus, g(x) is differentiable for x ∈ (−∞, 0) ∪ (0,∞). Combining the above arguments, we proved

that g(x) is differentiable for x ∈ R. Using the chain rule, we get for x ̸= 0,

g′(x) = 2x sin
1

x2
− 2x−1 cos

1

x2
.

It is direct to verify that g′(xn) tends to −∞ for

xn :=

√
1

2nπ
, n ∈ Z, n ≥ 1.

Hence g′(x) is not bounded on [−1, 1].
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6.1.17. By definition, for given ϵ > 0, there exists δ0(ϵ) such that if x ∈ I, then

∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣ ≤ ϵ,

which yields ∣∣f(u)− f(c)− f ′(c)(u− c)
∣∣ ≤ ϵ(c− u),

and ∣∣f(v)− f(c)− f ′(c)(v − c)
∣∣ ≤ ϵ(v − c).

Then the triangle inequality gives that

|f(v)− f(u)− (v − u)f ′(c)| = |f(v)− f(c)− (v − c)f ′(c)− f(u) + f(c) + (u− c)f ′(c)|
≤|f(v)− f(c)− (v − c)f ′(c)|+ |f(u)− f(c)− (u− c)f ′(c)| ≤ ϵ(v − u).

Hence, it is direct to see δ(ϵ) = δ0(ϵ).

6.2.4. Since f is differentiable for x ∈ R, the derivative of the point of relative minimum or maximum should be zero, then f ′(x0) =∑n
i=1 2(x − ai) − 0 gives x0 =

∑n
i=1 ai

n , which is unique and a point of minimum since f ′(x) > 0 for x > x0 and f ′(x) < 0 for
x < x0.

6.2.7. By the Mean Value Theorem, for x > 1, there exists a constant 1 ≤ c ≤ x such that

lnx− ln 1 =
1

c
(x− 1),

which yields
lnx ≤ x− 1.

Similarly, for x > 1, there exists a constant 1
x ≤ c ≤ 1 such that

ln 1− ln
1

x
= −1

c
(1− 1

x
) ≥ 1− 1

x
,

which yields

lnx ≥ x− 1

x
.

6.2.9. f(x) > 0 for all x ̸= 0, hence, f has an absolute minimum at x = 0. Direct calculation shows that

f ′(x) = 8x3 + 4x3 sin
1

x
− x2 cos

1

x
.

Let n ∈ Z and n > 1, it is also straightforward to verify that

f ′(
2

π + 4nπ
) > 0,

and

f ′(− 2

3π + 4nπ
) < 0.

Any neighborhood of 0 contains 2
π+4n0π

and − 2
3π+4n0π

for some n0 ∈ Z and n0 > 1. Therefore, f ′ has both positive and negative
values in every neighborhood of 0.
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