Topic \#5 Riemann Integral
Def. Let $I=[a, b],-\infty<a<b<\infty$
then a partition of I is a finite, ordered set:

$$
P=\left(x_{0}, x_{1}, \cdots, x_{n}\right)
$$

where $x_{i}(0 \leq i \leq n)$ are points in I such that

$$
a=x_{0}<x_{1}<\cdots<x_{n}=b .
$$

Note: A partition $P=\left(x_{0}, x_{1}, \cdots, x_{n}\right)$ divides I into subintervals

$$
I_{1}=\left[x_{0}, x_{1}\right], I_{2}=\left[x_{1}, x_{2}\right], \cdots, \quad I_{n}=\left[x_{n-1}, x_{n}\right]
$$

with interiors non-overlapping.
As such, we also denote P as

$$
P=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}
$$

Def: The norm (or mesh) of a partion $P=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ is defined as

$$
\begin{aligned}
\|P\| & =\max _{i=1, \cdots ; n}\left\{x_{i}-x_{i-1}\right\} \\
& =\max \left\{x_{1}-x_{0}, x_{2}-x_{1}, \cdots, x_{n}-x_{n-1}\right\}
\end{aligned}
$$

ire. length of the largest subinterval of P.
Def. (1) Let $t_{i} \in I_{i}:=\left[x_{i-1}, x_{i}\right] \quad(i=1, \cdots, n)$ be chosen in each subinterval of a partition $P=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ of $I=[a, b]$, then $t_{i}(I S i=n)$ are called tags of I_{i}.
(2) The partition $P=\left\{\left[x_{i}-1, x_{i} \cdot\right]\right\}_{i=1}^{n}$, together with tags t_{i} is called a tagged partition of $I=[a, b]$, deputed as

$$
\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], \quad t_{i}\right]_{i=1}^{n}
$$

Def. Let $\dot{P}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged partition of $I=[a, b]$, then the Riemann sum of a function $f:[a, b] \rightarrow \mathbb{R}$ is defined by

$$
S^{\prime}(f ; \dot{\Phi})=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

$S(f ; \dot{9})=$ sum of signed areas of those n rectangles with bases $\left[x_{i-1}, x_{i}\right]$ and heights $f\left(t_{i}\right)$, $i=1,2, \cdots, n$.

Deft: (1) A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on $[a, b]$ if $\exists L \in \mathbb{R}$ sit. $\forall \in>0, \exists \delta>0$ sot.
\forall tagged partition $\dot{\rho}$ of $[a, b]$ wits $\|\dot{\rho}\|<\delta$,

$$
\stackrel{1}{\rho}(f ; \rho)|-L|<\epsilon .
$$

(2) $\mathbb{R}[a, b]=\{f:[a, b] \rightarrow \mathbb{R}: f$ is Riemann integrable on $[a, b]\}$
(3) If $f \in R[a, b]$, then such $L \in \mathbb{R}$ is unique, called the Riemann integral of, f on $[a, b]$ and dentil by

$$
\begin{array}{r}
L=\int_{a}^{b} f \text { or } \int_{a}^{b} f(x) d x \\
(x \text { is dummy })
\end{array}
$$

Remark: Sometimes one writes $L=\lim _{\|\bar{\rho}\| \rightarrow 0}^{\prime \prime} S(f ; \dot{\rho})$ regarding L as "the limit" of $S(f ; \dot{g})$ as $\|\dot{g}\| \rightarrow 0$. However, $S(f ; \dot{\rho})$ is not a function of $11 \dot{\rho} \|$ (the same $\|\dot{S}\|$ may correspond to many different P's), so such limit is not the limit defined in the classical sense.

The. Let $f \in P\left[[a, b]\right.$, then $L=\int_{a}^{b} f$ is uniquely determined.
Pf. Suppose: $L_{1}, L_{2} \in \mathbb{R}$ both satisfy the deft.
There Let $\in>0$, then

$$
\begin{array}{l|l}
\exists \delta_{1}>0 \text {. sit. } & S\left(f ; \dot{p}_{1}\right)-L_{1} \left\lvert\,<\frac{\epsilon}{2} \quad \forall \dot{p}_{1}\right. \text { with }\left\|\dot{p}_{1}\right\|<\delta_{1} \\
\exists \delta_{2}>0 & \text { sit. }\left|S\left(f ; \dot{p}_{2}\right)-L_{2}\right|<\frac{\epsilon}{2} \quad \forall \dot{p}_{2} \text { with }\left\|\dot{p}_{2}\right\|<\delta_{2}
\end{array}
$$

Define $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$, then $\delta>0$.
Let $\dot{\rho}$ be a tagged partition with $\|\dot{P}\|<\delta$, then

$$
\|\dot{\rho}\|<\delta_{1} \text { and }\|\dot{\rho}\|<\delta_{2} \text {. }
$$

Hence $\left|S(f ; \dot{\rho})-L_{1}\right|<\epsilon / 2$ and $\left|S(f ; \dot{\rho})-L_{2}\right|<\epsilon / 2$.
This gives

$$
\begin{aligned}
\left|L_{1}-L_{2}\right| & \leqslant\left|L_{1}-s(f ; \dot{p})\right|+\left|s(f ; \dot{\rho})-L_{2}\right| \\
& <E / 2+E / 2 \\
& =\epsilon
\end{aligned}
$$

Since $\in>0$ is arbitrary, we have $\left|L_{1}-L_{2}\right|=0$, ‥s. $L_{1}=L_{2}$.

Thu Let $f(x)=g(x)$ except for a finite number of points of $[a, b]$ with $g \in R[a, b]$, then $f \in R[a, b]$ and $\int_{a}^{b} f=\int_{a}^{b} g$.

Pf Only prove the care $f(x)=g(x)$ except for one point in $[a, b]$; the general case can be troated by induction.

Assume: $\exists \exists c \in[a, L]$ s.t. $f(c) \neq g(c)$ and $f(x)=g(x), \forall x \in[a, b] \backslash c\}$ Since $g \in R[a, b], \quad \exists L \in \mathbb{R}$ sit. $L=\int_{a}^{b} S$.
Let $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged partion of $[a, b]$, then either (ii) $c \in\left(x_{i_{0}-1}, x_{i_{0}}\right)$ for some $i_{0} \in\{1,2, \cdots, n\}$
or $(i i) c=x_{i_{0}}$ for some $i_{0} \in\{1,2, \cdots, n\}$.
(at most two subintervals contain c)
In case (i) : $\quad f(x)=g(x), \forall x \in\left[x_{i-1}, x_{i}\right]$ with $i \neq i_{0}$
then $f\left(t_{i}\right)=g\left(t_{i}\right)$ for $i \neq i_{0}$ and

$$
\begin{aligned}
S & (f ; \dot{\rho})-S(g ; \dot{\rho}) \\
= & \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
= & \sum_{i=1}^{n}\left[f\left(t_{i}\right)-g\left(t_{i}\right)\right]\left(x_{i}-x_{i-1}\right) \\
= & \sum_{i=1}^{n}\left[f\left(t_{0}\right)-g\left(t_{i}\right)\right]\left(x_{i}-x_{i-1}\right)+\left[f\left(t_{p} t-g\left(t_{i}\right)\right]\left[x_{i_{0}} x_{i-1}\right]\right. \\
= & {\left[f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\right]\left(x_{i_{0}}-x_{i_{0}-1}\right) }
\end{aligned}
$$

implying

$$
\begin{aligned}
&|S(t ; \dot{\rho})-S(g ; \dot{\rho})| \leqslant\left|f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\right| \cdot\left|x_{i_{0}}-x_{i_{0}-1}\right| \\
& \leqslant(|f(c)|+|g(0)|)\|\dot{\rho}\| \\
&\left(\because \text { either } t_{i_{0}}=c \text { or } t_{i_{0}} \neq c\right)
\end{aligned}
$$

In case (ii): $c=x_{i_{0}} \in\left[x_{i_{0-1}}, x_{i 0}\right] \cap\left[x_{i 0}, x_{i_{0}+1}\right]$
$\therefore f(x)=g(x), \forall x \in\left[x_{i-1}, x_{i}\right]$ with $i \neq i_{0}, i_{0}+1$.
Similarly

$$
\begin{aligned}
& S\left(f ;{ }_{n}\right)-S(g ; \dot{\rho}) \rightarrow=0 \\
& \begin{aligned}
=\sum_{\substack{i=1 \\
i \neq i 0, i_{0}+1}}^{n}\left[f\left(t_{i}\right)-g(t+2)\right]\left(x_{i}-x_{i-1}\right)+ & {\left[f\left(t_{i}\right)-g\left(t_{i 0}\right)\right]\left[x_{i_{0}}-x_{i b-1}\right] } \\
+ & {\left[f\left(t_{i+1}\right)-g\left(t_{i+1}\right)\right)\left[x_{i_{0+1}}-x_{i_{i}}\right] }
\end{aligned}
\end{aligned}
$$

implying

$$
\begin{aligned}
& |S(f ; \dot{\rho})-S(g ; \dot{\rho})| \\
& \leqslant\left|f\left(t_{i_{0}}\right)-g\left(t_{i_{0}}\right)\right| \cdot\|\dot{\rho}\|+\left|f\left(t_{i_{0+1}}\right)-g\left(t_{i_{0}+1}\right)\right| \cdot\|\dot{\rho}\| \\
& \leqslant 2(|f(c)|+|g| c) \mid)\|\dot{\rho}\|
\end{aligned}
$$

Thus, in both cases,

$$
\left|S\left(f^{\prime} ; \dot{p}\right)-S(g ; \dot{p})\right| \leqslant 2(|f(c)|+|g(c)|)\|\dot{p}\| .
$$

Let $\epsilon>0$. Detinue $\delta_{1}=\frac{\epsilon}{5(|f(0)|+|g|() \mid)+1}$, then $\delta_{1}>0$.
And, $\forall \dot{\rho}$ with $\|\dot{\rho}\|<\delta_{y}$,

$$
\begin{aligned}
|S(f ; \dot{p})-S(g ; \dot{p})| & \leqslant 2(|f(c)|+|g(c)|)\|\dot{g}\| \\
& <2(|f(c)|+|g(c)|) \cdot \frac{\epsilon}{5(|f(c)+| g(c o \mid)+1} \\
& <\frac{2}{5} \epsilon<\frac{\epsilon}{2}
\end{aligned}
$$

Moreove, $g \in \Omega[a, b]$ let $L=\int_{a}^{b} g \in \mathbb{R}$, then $\exists \delta_{2}>0$ sit.

$$
|S(9 ; \dot{p})-L|<\epsilon / 2 \quad \forall \dot{p} \text { with }\|\dot{\rho}\|<\delta z \text {. }
$$

Dettine $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}>0$, then $\forall \dot{\rho}$ with $\|\dot{\rho}\|<\delta$,

$$
\begin{aligned}
|S(f ; \dot{p})-L| & \leqslant|S(f ; \dot{\rho})-S(g ; \dot{\rho})| \\
& +|S(g ; \dot{p})-L| \\
& \leqslant \epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

$\therefore f \in R[a, b]$ and $\int_{a}^{b} f=L=\int_{a}^{b} g$. \#\#

Examples:
(a) Let $f \equiv k$ be constant function, then $f \in \mathcal{R}[a, b]$.

Pd: Let $\dot{\beta}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged partition of $[a, b]$,
then

$$
\begin{aligned}
n(f ; \dot{3}) & =\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} k\left(x_{i}-x_{i-1}\right) \\
& =k \sum_{i=1}^{n}\left(x_{i}-x_{i-a}\right) \\
& =k\left(x_{n}-x_{0}\right) \\
& =k(b-a) .
\end{aligned}
$$

Let $\epsilon>0$, then one can pick any $\delta>0$ and have $|S(f ; \dot{\jmath})-k(b-a)|=0<\epsilon, \forall \dot{\jmath}$ with $\|\dot{\rho}\|<\delta$.

$$
\therefore f \equiv k \in R[a, b]
$$

and $\int_{a}^{b} k=k(b-a)$.
(b) Let $g:[0,3] \rightarrow \mathbb{R}$ be defined as

$$
g(x)= \begin{cases}3, & 1<x \leqslant 3 \\ 2, & 0 \leq x \leq 1\end{cases}
$$

then $g \in R$ [0. 3 and $\int_{0}^{3} g=8$
Pf: Let $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged partition of $[0,3]$.
There is $k \in\{1, \cdots, n\}$ such that $t_{k} \leqslant 1<t_{k+1}$ (think a bout
Denote $\dot{\mathscr{P}}_{1}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{k}$: tagged partite all cases)
and all cases

$$
\dot{P}_{2}=\left\{\left[x_{i-1}, x_{i}\right], t_{i j}\right\}_{i=k+1}^{n}: \text { tagged partition of }\left[x_{k}, 3\right]
$$

We may write

$$
\begin{aligned}
S(\theta ; \dot{\rho}) & =\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{+k} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i=k+1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =S\left(g ; \dot{\rho}_{1}\right)+S\left(g ; \dot{\rho}_{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
S\left(g ; \dot{p}_{1}\right) & =\sum_{i=1}^{k} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{k} 2\left(x_{i}-x_{i-1}\right) \quad\left(\because t_{k} \leqslant 1\right. \\
& =2\left(x_{k}-x_{0}\right) \\
& =2\left(x_{k}-0\right) \\
& =2 x_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& S\left(g ; \dot{p}_{2}\right)=\sum_{i=k+1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&=\sum_{i=k+1}^{n} 3\left(x_{i}-x_{i-1}\right) \quad\left(\because 1<t_{k+1}\right. \\
&=3 \sum_{i=k+1}^{n}\left(x_{i}-x_{i-1}\right) \\
&=3\left(x_{n}-x_{k}\right) \\
&\left.\therefore 1<t_{k+1} \leqslant \cdots \leqslant t_{n} \leqslant 3\right) \\
& \delta>0 \text { be such that } 113\left(111<\delta<x_{k}\right) .
\end{aligned}
$$

In fact, by the fact that

$$
t_{k} \leqslant 1, x_{k-1} \leqslant t_{k} \leqslant x_{k}, \quad x_{k}-x_{k-1} \leqslant \delta,
$$

it holds:

$$
x_{k} \leqslant x_{k-1}+\delta \leqslant t_{k}+\delta \leqslant 1+\delta .
$$

By the fact that
it holds:

$$
t_{k+1}>1, \quad x_{k} \leqslant t_{k+1} \leqslant x_{k+1}, \quad x_{k+1}-x_{k} \leq \delta
$$

$$
x_{k} \geqslant x_{k+1}-\delta \geqslant t_{k+1}-\delta>1-\delta
$$

By the claim,

$$
\begin{gathered}
2(1-\delta)<S\left(9 ; \dot{p}_{1}\right)=2 x_{k} \leqslant 2(1+\delta) \\
3(2-\delta)=3\left(3-(1+\delta)<S\left(9 ; \dot{p}_{2}\right)=3\left(3-x_{k}\right) \leqslant 3(3-(1-\delta))=3(2+\delta)\right.
\end{gathered}
$$

Thus, for $\dot{\beta}$ with $\|\dot{j}\|<\delta$,

$$
\begin{aligned}
& 2(1-\delta)+3(2-\delta) \leqslant S(9 ; \dot{\beta}) \leqslant 2(1+\delta)+3(2+\delta) \\
& \text { i.e. } \\
& \qquad \begin{aligned}
& 8-5 \delta \leqslant S(9 ; \dot{\beta}) \leqslant 8+5 \delta \\
& \therefore \quad|S(9 ; j)-8| \leqslant 5 \delta .
\end{aligned}
\end{aligned}
$$

Let $\delta=\frac{\epsilon}{10}>0$, then

$$
|S(9 ; \dot{p})-8| \leqslant 5 \cdot \frac{\epsilon}{10}<\epsilon, \quad \forall \dot{\rho} \text { with }\|\dot{p}\|<\delta \text {. }
$$

Therefore

$$
g \in R[0,3] \text { with } \int_{0}^{3} g=8
$$

(c) Let $h(x)=x, 0 \leqslant x \leqslant 1$, then $h \in R[0,1]$ with $\int_{0}^{1} h=\frac{1}{2}$.

Pf: Let $\rho=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be a partition of $I=[0,1]$.
Take tags $q_{i}=\frac{x_{i-1}+x_{i}}{2}$ to be the mid-points of $\left[x_{i-1}, x_{i}\right]$. For the tagged portion $\hat{Q}^{2}=\left\{\left[x_{i-1}, x_{i}\right] ; q_{i}\right\}_{i=1}^{n}$,

$$
\begin{aligned}
S(h ; \dot{Q}) & =\sum_{i=1}^{n} h\left(q_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} q_{i}\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} \frac{x_{i}+x_{i-1}}{2} \cdot\left(x_{i-}-x_{i-1}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}^{2}-x_{i-1}^{2}\right) \\
& =\frac{1}{2}\left(x_{n}^{n}-x_{0}^{2}\right) \\
& =\frac{1}{2}\left(1^{2}-0^{2}\right) \\
& =\frac{1}{2} .
\end{aligned}
$$

Let $\delta>0$ be such that $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ is a tagged partition with the same partion but arbitrary tags t_{i} such that $\|\dot{j}\|<\delta$.
As such,

$$
\begin{aligned}
& |S(h ; \dot{p})-S(h ; \dot{Q})| \\
& =\left|\sum_{i=1}^{n} h\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} h\left(q_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
& =\left|\sum_{i=1}^{n} t_{i}\left(x_{i}-x_{i-1}\right)-\sum_{i=1}^{n} q_{i}\left(x_{i}-x_{i-1}\right)\right| \\
& =\left|\sum_{i=1}^{n}\left(t_{i}-q_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
& \leqslant \sum_{i=1}^{n}\left|t_{i}-q_{i}\right| \cdot\left(x_{i}-x_{i-1}\right) \\
& <\delta \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \quad\left[\because t_{i}, q_{i} \in\left[x_{i-1}, x_{i}\right], x_{i}-x_{i-1}<\delta\right] \\
& =\delta\left(x_{n}-x_{0}\right) \\
& =\delta(1-0)=\delta .
\end{aligned}
$$

Now, take $\delta=\epsilon>0 . \quad \forall \dot{\rho}$ with $\|\rho\|<\delta$,

$$
\left|S(h ; \dot{\rho})-\frac{1}{2}\right|=|S(h ; \dot{\rho})-S(h ; Q)|<\epsilon
$$

$\therefore h \in R[0,1]$ with $\int_{0}^{1} h=\frac{1}{2}$. \#\#

- End of Feb 5 -
(d) Let $G(x)= \begin{cases}\frac{1}{n}, & \text { if } x=\frac{1}{n}(n=1,2, \cdots) \\ 0 & \text { elsewhere on }[0,1]\end{cases}$ then $G \in R[0,1]$ with $\int_{0}^{1} G=0$.

Pf: $L_{\text {et }} \epsilon>0$. Clos: Denote

$$
\begin{aligned}
E_{\epsilon} & =\{x \in[0,1]: G(x) \geqslant \epsilon\} \\
& =\left\{1, \frac{1}{2}, \cdots, \frac{1}{N_{\epsilon}}\right\}
\end{aligned}
$$

where $N_{\epsilon}=\left[\frac{1}{\epsilon}\right]$ is the largest integer $\leqslant \frac{1}{\epsilon}$
Note: \# of $E_{\epsilon}=N_{\epsilon}$. Take $\delta=\frac{\epsilon}{2 N_{\epsilon}}>0$.

Let $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ be a tagged partition with $\|\dot{\rho}\|<\delta$, then

$$
\begin{aligned}
& S(G ; \dot{p})=\sum_{i=1}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&=\underbrace{\sum_{i=1}^{n} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)}_{(I)}+\underbrace{\sum_{i \neq E}}_{(I I)} \underbrace{n}_{i=1} G\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& t_{i} \in E_{\epsilon}
\end{aligned}
$$

$\operatorname{part}(I): \quad t_{i} \notin E_{\epsilon} \Rightarrow 0 \leqslant G\left(t_{i}\right)<\epsilon$,

$$
\therefore 0 \leqslant \text { हुपद }(I)<\epsilon \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\epsilon(1-0)=\epsilon \text {. }
$$

Part (II): 证酗: $0 \leqslant G(x) \leqslant 1,0 \leqslant x \leqslant 1 ; \#$ of $E_{\epsilon}=N_{\epsilon}$

$$
\begin{aligned}
& \therefore 0 \leqslant \text { (II) } \leqslant \sum_{i=1}^{n} \delta \\
& t_{i \in} \in E_{\epsilon} \\
& \leqslant 2 N_{\epsilon} \cdot \delta=\epsilon
\end{aligned}
$$

each $t_{i} \in E_{\epsilon}$ may be counted twice

Hence,

$$
0 \leqslant S(G, \dot{p})=(\text { I })+\text { (II) }<\epsilon+\epsilon=2 \epsilon, \forall \dot{p} \text { with } \| \dot{p} \mid<\delta \text {. }
$$

therefore,
$G \in R[0,1]$ with $\int_{0}^{1} G=0$. \#

Properties of Integrals
Thu: Let $f, g \in R[a, b]$, then
(a) $k f \in R[a, b], \forall k \in \mathbb{R}$ with $\int_{a}^{b} k f=k \int_{a}^{b} f$
(b) $f+g \in R[a, b]$ with $\int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g$
(c) If $f(x) \leqslant g(x), \forall x \in[a, b]$, then $\int_{a}^{b} f \leq \int_{a}^{b} g$
if (a) Omitted, similar to the proof of (b).
(b) Let $\epsilon>0$. Since $f, g \in \Omega[a, b]$,

$$
\exists \delta_{1}>0 \text { sit. }\left|S(f ; \dot{\rho})-\int_{a}^{b} f\right|<\epsilon, \forall \dot{\rho} \text { with }\|\dot{\rho}\|<\delta_{1}
$$

and

$$
\exists \delta_{2}>0 \text { sit. }\left|S(f ; \dot{\rho})-\int_{a}^{b} g\right|<\epsilon, \forall \dot{\rho} \text { with }\|\dot{\rho}\|<\delta_{2} \text {. }
$$

Consider a tagged partition \& $j=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ of $[a, b]$.
We have

$$
\begin{aligned}
S(f+g ; \dot{\rho}) & =\sum_{i=1}^{n}(f+g)\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)+\sum_{i=1}^{n} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& =S(f ; \dot{j})+S(g ; j)
\end{aligned}
$$

Then, $\forall \dot{\rho}$ with $\|\dot{\rho}\|<\delta:=\min \left\{\delta_{1}, \delta_{2}\right\}>0$,

$$
\begin{aligned}
& \left|S(f+g ; \dot{p})-\left(\int_{a}^{b} f+\int_{a}^{b} g\right)\right| \\
& =\left|\left[S(f ; \dot{p})-\int_{a}^{b} f\right]+\left[S(g ; \dot{p})-\int_{a}^{b} g\right]\right| \\
& \leqslant\left|S(f ; \dot{p})-\int_{a}^{b} f\right|+\left|S(g ; \dot{p})-\int_{a}^{b} g\right| \\
& \leqslant \epsilon+\epsilon \\
& =2 \epsilon .
\end{aligned}
$$

$\begin{aligned} &=26 . \\ & \text { This proved that } f+g \in R[a, b] \text { with } \int_{a}^{b}(f+g)=\int_{a}^{b} f+\int_{a}^{b} g_{\#}\end{aligned}$
(c) Let $\epsilon>0$. As in (b) $\exists \delta>0$ s.t.

$$
\left.\begin{array}{l}
\left|S(f ; \dot{\rho})-\int_{a}^{b} f\right|<\epsilon \\
\left|S(g ; \dot{\rho})-\int_{a}^{b} g\right|<\epsilon
\end{array}\right\} \quad \forall \dot{\rho} \text { with }\|\dot{\rho}\|<\delta .
$$

Consider $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ of $[a, b]$.
Note: $S\left(f_{i} \dot{\rho}\right)=\sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)$

$$
\begin{array}{ll}
\leqslant \sum_{i=1}^{=1} g\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) & \left(\because f(x) \leqslant g\left(k_{1}\right), \forall x \in[a, b]\right. \\
=S(g ; \dot{\rho}) & \left.x_{i}-x_{i-1} \geqslant 0\right)
\end{array}
$$

Therefore, $\int_{a}^{b} f-\epsilon<S(f ; \dot{\rho}) \leqslant S(g ; \dot{\rho}) \leqslant \int_{a}^{b} g+\epsilon$

$$
\therefore . e . \int_{a}^{b} f<\int_{a}^{b} g+2 \epsilon \text {. }
$$

Since $\epsilon>0$ is arbitrary, it. holds: $\int_{a}^{b} f \leqslant \int_{a}^{b} g$..

Bounded Theorem:
A Riemann integral function must be bounded.
Thm: Let $f \in R[a, b]$, then f is bounded on $[a, b]$.
Pf: Otherwise f is unbounded on $[a, b]$.
Let $\int_{a}^{b} f=L \in \mathbb{R}$, then $\exists \delta>0$ sit.
$|S(f ; \dot{p})-L|<1 \quad \forall \dot{\rho}$ with $\|\dot{\rho}\|<\delta$.
This implies: $\forall \dot{\beta}$ with $\|\dot{\rho}\|<\delta$,

$$
|S(f ; \dot{p})| \leqslant|S(f ; \dot{p})-L|+|L|<|L|+1
$$

Let $\rho=\left\{\left[x_{i-1}, x_{i}\right]\right\}_{i=1}^{n}$ be a partition of $[a, b]$ with $\|$ ア\|l $\overline{<\delta}$.
: f is unbounded on $[a, b]$,
$\therefore \exists$ a subinterval $\left[X_{i_{0}-1}, X_{i_{0}}\right]$ s.t.
f is unbounded on $\left[x_{i 0-1}, x_{i_{0}}\right]$
WLG, we also assume f is bounded on all other subinterals
Then, one can find $t_{i_{0}} \in\left(X_{i_{0}-1}, X_{i_{0}}\right)$ s.t.

$$
\begin{equation*}
\left|f\left(i_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)\right|>|L|+1+\left|\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \tag{L}
\end{equation*}
$$

Now, we choose tags

$$
t_{i}= \begin{cases}x_{i} & \text { of } i \neq i_{0} \\ t_{i_{0}} & \text { if } i=i_{0}\end{cases}
$$

and for the tagged partition $\dot{\rho}=\left\{\left[x_{i-1}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$,

$$
\begin{align*}
& S^{\prime}(f ; \dot{\rho})= \sum_{i=1}^{n} f\left(t_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&=f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)+\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& \Rightarrow \cdot f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)=S(f ; \dot{\rho})-\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right) \\
& \Rightarrow\left|f\left(t_{i_{0}}\right)\left(x_{i_{0}}-x_{i_{0}-1}\right)\right| \leqslant|S(f ; \dot{p})|+\left|\sum_{i \neq c_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right| \\
&<|L|+1+\left|\sum_{i \neq i_{0}} f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)\right|(\text { by }(*) \tag{*}
\end{align*}
$$

this contradicts (**).
$\therefore f$ is bounded on $[a, b]$.

Example: \exists a function that is discontinuous at every rational number but is Riemann integrable.

In fact, define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(x)= \begin{cases}0, & \text { if } x \text { is irrational, } \in[0,1] \\ 1, & \text { if } x=0 \\ \frac{1}{n}, & \text { if } x=\frac{m}{n} \in[0,1], \text { where } \\ \text { (rational) } \quad m, n \in \mathbb{N}=\{1,2, \ldots\} \\ & \text { and g.c.d. }(m, n)=1\end{cases}
$$

(Thomas's function)
show that $h \in R[0,1]$ with $\int_{0}^{1} h=0$
RK: Recall (chapter $5.1 .6(h)$ of the textbook) that h is discontinuous at every rational number in $[0,1]$ and continuous at every irrational number in $[0,1]$.
P\}: Let $\epsilon>0$. Define $E_{\epsilon}=\left\{x \in[0,1]: h(x) \geqslant \frac{\epsilon}{2}\right\}$.
Note that E_{ϵ} is a finite set,
for instance, $\frac{e}{2}=\frac{1}{5}$, then

$$
E_{\epsilon}=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\}
$$

Denote $N_{\epsilon}=\#$ of E_{ϵ}
Detine $\delta_{\epsilon}=\frac{\epsilon}{4 N_{\epsilon}}>0$.
Then, $\forall \dot{\rho}=\left\{\left[x_{i-q}, x_{i}\right], t_{i}\right\}_{i=1}^{n}$ with $\|\dot{\rho}\|<\delta_{\epsilon}$,

$$
\begin{aligned}
& S(h ; \dot{\beta})=\left\{\begin{array}{l}
\left\{\sum_{i=1}^{n}+\sum_{i=1}^{n}\right. \\
t_{i} \notin E_{\epsilon} \\
t_{i} \in E_{\epsilon}
\end{array}\right\} h\left(t_{i}\right)\left(x_{i}-x_{i=1}\right) \\
& \text { subintervals } \\
& <\sum_{i=1}^{n} \frac{\epsilon}{2}\left(x_{i}-x_{i-1}\right)+2 N_{\epsilon} \cdot \delta_{\epsilon} \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

note $S(h ; \dot{p}) \geqslant 0$, then $|S(h ; \dot{p})-0|<\epsilon$.

$$
\therefore h \in R[0,1] \text { with } S_{0}^{1} h=0
$$

