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Reference Solutions

8.1.21. Let ε > 0. Since (fn), (gn) converge uniformly on A to f, g, respectively, there exist K1,K2 > 0 such that the following holds.
If n > K1 and x ∈ A, then |fn(x)− f(x)| < ε/2. If n > K2 and x ∈ A, then |gn(x)− g(x)| < ε/2. Let K = max{K1,K2}, then
for n > K and x ∈ A, it holds that

|(fn + gn)(x)− (f + g)(x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| < ε.

Hence, (fn + gn) converges uniformly on A to f + g.

8.1.22. Let ε > 0. Choose N := [1/ε] + 1. Then for n > N and x ∈ R, we have |fn(x) − f(x)| = 1/n < ε. Hence, fn converges
uniformly on R to f .

A direct calculation shows that |f2n(x)− f2(x)| = | 2xn + 1
n2 |. Let ε0 = 1, then for any k ∈ N, let nk = k and xk = k, then

|f2nk
(xk)− f2(xk)| = |2xk

nk
+

1

n2k
| = 2 +

1

k2
> 1 = ε0.

Thus, (f2n) does not converge uniformly on R.

8.2.2. One can see that for each n ∈ N, fn is continuous on [0, 1] and fn → f ≡ 0 on [0, 1], where the limit function f is also continuous
on [0, 1]. We prove that the convergence is not uniform. In fact, let ε0 = 1. For k ∈ N, let nk = 2k and xk = 1

2k ∈ [0, 1], then
0 < xk ≤ 1

nk
so that

|fnk
(xk)− f(xk)| = |n2kxk − 0| = 2k > 1 = ε0, ∀ k ∈ N.

Hence, the convergence is not uniform.

8.2.5. Let ε > 0. Since f : R → R is uniformly continuous on R, there exists δ > 0 such that if x, y ∈ R and |x1 − x2| < δ, then it
holds that |f(x1)− f(x2)| < ε. We let N = [1/δ] + 1. Then for any n > N and x ∈ R, one has |(x+ 1/n)− x| ≤ δ, which yields

|fn(x)− f(x)| = |f(x+
1

n
)− f(x)| < ε.

Hence, (fn) converges uniformly on R to f .

8.2.7. For each n ∈ N, the fact that fn is bounded implies that there exists Mn > 0 such that supx∈A |fn(x)| ≤ Mn. By the
uniform convergence, there exists K ∈ N such that for n ≥ K and x ∈ A, it holds that |fn(x) − f(x)| < 1. It then follows that
|f(x)| ≤ |f(x)− fK(x)|+ |fK(x)| ≤ 1 + |fK(x)| ≤ 1 +MK <∞, for all x ∈ A. Hence, f is bounded on A.

8.2.13. Let fn(x) = sinnx
nx if x 6= 0 and 1 otherwise, then for each n ∈ N, fn is continuous on R and hence

∫ π
a

(sinnx)/(nx)dx =∫ π
a
fn(x)dx exists. It is also direct to see that fn → f on R with f(x) = 0 if x 6= 0 and 1 otherwise. Thus f is integrable in the

interval with ending points a and π and
∫ π
a
f = 0. Note that fn is uniformly bounded on any finite interval [−A,A] with A > 0.

In fact,

‖fn‖[−A,A] = sup
|x|≤A

|fn(x)| = sup
0<|x|≤A

|fn(x)| = sup
0<|x|≤A

| sinnx
nx
| ≤ max{ sup

0<|y|≤A
| sin y
y
|, 1

A
} <∞,

for all n ∈ N. Then, Bounded Convergence Theorem implies that lim
n→∞

∫ π
a
fn =

∫ π
a
f = 0 for any a ∈ R.

8.2.16. (a) For each n ∈ N, fn = 0 on [0, 1] except for a finite number of points r1, ..., rn in [0, 1]. Since 0 ∈ R[0, 1], it holds that
fn ∈ R[0, 1]. (b) It suffices to show fn ≤ fn+1 on [0, 1] for each n ∈ N. In fact, if x ∈ {r1, ..., rn} then fn(x) = 1 = fn+1(x);
if x = rn+1 then fn(x) = 0 < 1 = fn+1(x); otherwise, for any x ∈ [0, 1] − {r1, ..., rn+1}, fn(x) = 0 = fn+1(x). (c) Since fn is
bounded on [0, 1], Monotone Convergence Theorem implies that the sequence (fn(x)) is convergent for each x ∈ [0, 1] and we set
f := lim fn on [0, 1]. If x ∈ [0, 1] is irrational then fn(x) = 0 for all n ∈ N and hence fn(x) → 0; if x ∈ [0, 1] is rational then
there is n0 ∈ N such that x = rn0

and hence, for n ≥ n0, fn(x) = fn(rn0
) = 1, then fn(x)→ 1. Combining both cases, the limit

function f satisfies that f(x) = 0 if x ∈ [0, 1] is irrational and f(x) = 1 if x ∈ [0, 1] is rational. Therefore, f is the Dirichlet
function, which is not Riemann integrable on [0, 1].
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