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Reference Solutions
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When n = 0, the equality obviously holds. By induction process, we assume
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6.4.7. Direct calculations by Taylor expansion show that (1 + x)
1
3 = P2(x) +R2(x) where
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for some 0 < ⇠ < x. We let x = 0.2 and x = 1 respectively to get |(1.2) 1
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6.4.8. For fixed x0, x, we get by Taylor’s Theorem that
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for some c which is between x and x0. Then
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6.4.12. We use Taylor’s Theorem to expand f(x) = sinx and x0 = 0 to get
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for some c between x and 0, which gives
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since |x7|  1,| cos c|  1.
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6.4.14. (a) We calculate directly to get f 0(x) = 3x2, f 00(x) = 6x and f 000(x) = 6. Then f(0) = f 0(0) = f 00(0) = 0 and f 000(0) > 0.
Hence it is not a relative extremum.

(b) It holds that g0(x) = cosx� 1, g00(x) = � sinx and g000(x) = � cosx. Then g(0) = g0(0) = g00(0) = 0 and g000(0) < 0. Hence,
it is not a relative extremum.

(c) It holds that h0(x) = cosx+ 1
2x

2. h0(0) > 0. Hence, it is not a relative extremum.

(d) One has k0(x) = � sinx+ x, k00(x) = � cosx+ 1, k000(x) = sinx and k(4)(x) = cosx. Then k(0) = k0(0) = k00(0) = k000(0) = 0
and k(4)(0) > 0. x = 0 is a relative minimum point.

6.4.16. By L’Hospital’s Rule,
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Without loss of generality, we may assume a = 0. Let f(x) = x2 for x � 0 and f(x) = �x2 for x < 0. It is direct to see it is a
counter-example.

6.4.23. We have f 0(x) = 24x2 � 16x. By direct calculations, one gets

(a)

x1 ⇡ 35

52
· · ·
x11 ⇡ 0.80901699.

(b)

x1 =
1

2
,

which is indeed a root. Hence, the iteration stops.
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