MATH2060AB Homework 1 Reference Solutions

6.1.4. For any $\epsilon>0$, we let $\delta=\epsilon$ such that for any rational $0<|x-0|<\delta$, it holds that

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\left|\frac{x^{2}}{x}-0\right|=|x|<\delta
$$

For any irrational $0<|x-0|<\delta$, it holds that

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=0<\delta
$$

Hence, f is differentiable at $x=0$ and $f^{\prime}(0)=0$.
6.1.8. (a) f is differentiable for $x \in(-\infty,-1) \cup(-1,0) \cup(0, \infty)$. For $x \in(-\infty,-1) \cup(-1,0) \cup(0, \infty)$,

$$
f^{\prime}(x)= \begin{cases}-2 & \text { if } x \in(-\infty,-1) \\ 0 & \text { if } x \in(-1,0) \\ 2 & \text { if } x \in(0, \infty)\end{cases}
$$

(b) g is differentiable for $x \in(-\infty, 0) \cup(0, \infty)$. For $x \in(-\infty, 0) \cup(0, \infty)$,

$$
g^{\prime}(x)= \begin{cases}1 & \text { if } x \in(-\infty, 0) \\ 3 & \text { if } x \in(0, \infty)\end{cases}
$$

(c) h is differentiable for $x \in \mathbb{R}$.

$$
h^{\prime}(x)= \begin{cases}-2 x & \text { if } x \in(-\infty, 0) \\ 2 x & \text { if } x \in(0, \infty)\end{cases}
$$

(d) k is differentiable for $x \in \cup_{n \in \mathbb{Z}}(n \pi,(n+1) \pi)$. For $x \in(n \pi,(n+1) \pi), n \in \mathbb{Z}$

$$
k^{\prime}(x)= \begin{cases}\cos x & \text { if } n \text { is even } \\ -\cos x & \text { if } n \text { is odd }\end{cases}
$$

6.1.10. Given any $\epsilon>0$, we let $\delta=\epsilon \mathrm{l}$ to get that for $0<|x|<\delta$,

$$
\left|\frac{g(x)-g(0)}{x-0}\right|=\left|x \sin \frac{1}{x^{2}}\right|<|x|<\epsilon .
$$

Hence, g is differentiable at $x=0$ and $g^{\prime}(0)=0$. For any $x_{0} \in(-\infty, 0) \cup(0, \infty), \frac{1}{x^{2}}$ and x^{2} are differentiable at $x=x_{0}$ and $\sin \frac{1}{x^{2}}$ is differentiable at $\frac{1}{x_{0}^{2}}$. Thus, $g(x)$ is differentiable for $x \in(-\infty, 0) \cup(0, \infty)$. Combining the above arguments, we proved that $g(x)$ is differentiable for $x \in \mathbb{R}$. Using the chain rule, we get for $x \neq 0$,

$$
g^{\prime}(x)=2 x \sin \frac{1}{x^{2}}-2 x^{-1} \cos \frac{1}{x^{2}}
$$

It is direct to verify that $g^{\prime}\left(x_{n}\right)$ tends to $-\infty$ for

$$
x_{n}:=\sqrt{\frac{1}{2 n \pi}}, \quad n \in \mathbb{Z}, \quad n \geq 1
$$

Hence $g^{\prime}(x)$ is not bounded on $[-1,1]$.
6.1.17. By definition, for given $\epsilon>0$, there exists $\delta_{0}(\epsilon)$ such that if $x \in I$, then

$$
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right| \leq \epsilon
$$

which yields

$$
\left|f(u)-f(c)-f^{\prime}(c)(u-c)\right| \leq \epsilon(c-u)
$$

and

$$
\left|f(v)-f(c)-f^{\prime}(c)(v-c)\right| \leq \epsilon(v-c)
$$

Then the triangle inequality gives that

$$
\begin{aligned}
& \left|f(v)-f(u)-(v-u) f^{\prime}(c)\right|=\left|f(v)-f(c)-(v-c) f^{\prime}(c)-f(u)+f(c)+(u-c) f^{\prime}(c)\right| \\
\leq & \left|f(v)-f(c)-(v-c) f^{\prime}(c)\right|+\left|f(u)-f(c)-(u-c) f^{\prime}(c)\right| \leq \epsilon(v-u) .
\end{aligned}
$$

Hence, it is direct to see $\delta(\epsilon)=\delta_{0}(\epsilon)$.
6.2.4. Since f is differentiable for $x \in \mathbb{R}$, the derivative of the point of relative minimum or maximum should be zero, then $f^{\prime}\left(x_{0}\right)=$ $\sum_{i=1}^{n} 2\left(x-a_{i}\right)-0$ gives $x_{0}=\frac{\sum_{i=1}^{n} a_{i}}{n}$, which is unique and a point of minimum since $f^{\prime}(x)>0$ for $x>x_{0}$ and $f^{\prime}(x)<0$ for $x<x_{0}$.
6.2.7. By the Mean Value Theorem, for $x>1$, there exists a constant $1 \leq c \leq x$ such that

$$
\ln x-\ln 1=\frac{1}{c}(x-1)
$$

which yields

$$
\ln x \leq x-1
$$

Similarly, for $x>1$, there exists a constant $\frac{1}{x} \leq c \leq 1$ such that

$$
\ln 1-\ln \frac{1}{x}=-\frac{1}{c}\left(1-\frac{1}{x}\right) \geq 1-\frac{1}{x}
$$

which yields

$$
\ln x \geq \frac{x-1}{x}
$$

6.2.9. $f(x)>0$ for all $x \neq 0$, hence, f has an absolute minimum at $x=0$. Direct calculation shows that

$$
f^{\prime}(x)=8 x^{3}+8 x^{3} \sin \frac{1}{x}-x^{2} \cos \frac{1}{x}
$$

Let $n \in \mathbb{Z}$ and $n>1$, it is also straightforward to verify that

$$
f^{\prime}\left(\frac{2}{\pi+4 n \pi}\right)>0
$$

and

$$
f^{\prime}\left(-\frac{2}{3 \pi+4 n \pi}\right)<0
$$

Any neighborhood of 0 contains $\frac{2}{\pi+4 n_{0} \pi}$ and $-\frac{2}{3 \pi+4 n_{0} \pi}$ for some $n \in \mathbb{Z}$ and $n>1$. Therefore, f^{\prime} has both positive and negative values in every neighborhood of 0 .

