THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 9

Uniform Continuity

Definition. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. We say that f is **uniformly continuous** on A if for each $\varepsilon > 0$ there is a $\delta(\varepsilon) > 0$ such that if $x, u \in A$ satisfy $|x - u| < \delta(\varepsilon)$, then $|f(x) - f(u)| < \varepsilon$.

Nonuniform Continuity Criteria. Let $A \subseteq \mathbb{R}$ and let $f : A \to \mathbb{R}$. Then the following statements are equivalent:

- (i) f is not uniformly continuous on A.
- (ii) There exists an $\varepsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ}, u_{δ} in A such that $|x_{\delta} u_{\delta}| < \delta$ and $|f(x_{\delta}) f(u_{\delta})| \ge \varepsilon_0$.
- (iii) There exists an $\varepsilon_0 > 0$ and two sequences (x_n) and (u_n) in A such that $\lim(x_n u_n) = 0$ but $|f(x_n) f(u_n)| \ge \varepsilon_0$ for all $n \in \mathbb{N}$.

Example 1. Determine whether the following functions are uniformly continuous:

- (a) $f: [0, \infty) \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$;
- (b) $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = \cos(x^2)$.

Example 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. If f^2 is uniformly continuous on \mathbb{R} , is it true that f is also uniformly continuous on \mathbb{R} ?

Example 3. Let $f : \mathbb{R} \to \mathbb{R}$ be a uniformly continuous function on \mathbb{R} with f(0) = 0. Prove that there exists some C > 0 such that

$$|f(x)| \le 1 + C|x|$$
 for all $x \in \mathbb{R}$.