THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 8

In the tutorial, we discuss the questions in Home Test and the following.
Theorem 8.8. If f is a continuous function defined on a compact set A, then f is a bounded function. Moreover, there are x_{1} and x_{2} in A such that $f\left(x_{1}\right)=\min \{f(x): x \in$ $A\}$ and $f\left(x_{2}\right)=\max \{f(x): x \in A\}$.

Theorem 8.10. If f is a continuous function defined on a compact set A, then the image $f(A):=\{f(x): x \in A\}$ is compact.

Example 1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that $\lim _{x \rightarrow-\infty} f=0$ and $\lim _{x \rightarrow \infty} f=0$.
(a) Prove that f attains either a maximum or minimum on \mathbb{R}.
(b) Give an example to show that both a maximum and a minimum need not be attained.

