THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2058 Honours Mathematical Analysis I Tutorial 7

Continuous Functions

Let $\emptyset \neq A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in A$.

- **Definition.** We say that f is continuous at c if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) f(c)| < \varepsilon$ whenever $x \in A$ with $|x c| < \delta$.
 - Let B ⊆ A. We say that f is continuous on B if f is continuous at every point of B.
- *Remarks.* (1) We do not assume that c is a limit point of A.
 - Case 1: If $c \in D(A)$, then f is continuous at $c \iff \lim_{a \to a} f = f(c)$.
 - Case 2: If $c \notin D(A)$, then $V_{\delta}(c) \cap A = \{c\}$ for some $\delta > 0$, so that f is automatically continuous at c.
 - (2) "f is continuous on B" and " $f|_B$ is continuous" are different.

Sequential Criterion for Continuity. f is continuous at c if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

Discontinuity Criterion. f is discontinuous at c if and only if there is a sequence (x_n) in A that converges to c but the sequence $(f(x_n))$ does not converge to f(c).

Example 1. Determine all the points of continuity of the function $g(x) \coloneqq x \lfloor x \rfloor$.

Example 2. Give an example for each of the following:

- (a) A function $f : \mathbb{R} \to \mathbb{R}$ that is continuous everywhere except at one point.
- (b) A function $f : \mathbb{R} \to \mathbb{R}$ that is discontinuous everywhere.
- (c) A function $f : \mathbb{R} \to \mathbb{R}$ that s continuous exactly at one point.
- (d) A function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on $\mathbb{R} \setminus \mathbb{Q}$ but distortinuous on \mathbb{Q} .

Example 3. Let $\{r_j\}_{j=1}^N$ or $\{r_j\}_{j\in\mathbb{N}}$ be an enumeration of a countable set $C \subseteq \mathbb{R}$. Define the function $\varphi : \mathbb{R} \to \mathbb{R}$ by

$$\varphi(x) = \sum_{j: r_j < x} \frac{1}{2^j}, \quad x \in \mathbb{R}.$$

Show that

- (a) φ is increasing.
- (b) φ is discontinuous at every $r_j \in C$.
- (c) φ is continuous at every point in $\mathbb{R} \setminus C$.

Example 4. Is there a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous on \mathbb{Q} but distortinuous on $\mathbb{R} \setminus \mathbb{Q}$?