THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics
 MATH2058 Honours Mathematical Analysis I Tutorial 6

Limits of Functions

Definition. Let $A \subseteq \mathbb{R}$.
(i) A point x_{0} is called a limit point of A if for any $\varepsilon>0$, there is $a \in A$ such that $0<\left|x_{0}-a\right|<\varepsilon$.
(ii) Write $D(A)$ for the set of all limits points of A.

Definition. Let $A \subseteq \mathbb{R}, c \in D(A)$ and $f: A \rightarrow \mathbb{R}$. A real number L is said to be a limit of f at c if, given any $\varepsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\varepsilon \quad \text { whenever } x \in A \text { and } 0<|x-c|<\delta .
$$

In this case, the limit is in fact unique and we write $\lim _{x \rightarrow c} f(x)=L$.
Example 1. By virtue of $\varepsilon-\delta$ definition, show that $\lim _{x \rightarrow 2} \frac{x+6}{x^{2}-2}=4$.
Sequential Criterion. Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$ and $c \in D(A)$. Then the following are equivalent.
(i) $\lim _{x \rightarrow c} f(x)$ exists.
(ii) If $\left(x_{n}\right)$ is a convergent sequence in $A \backslash\{c\}$ with $\lim \left(x_{n}\right)=c$, then the sequence $\left(f\left(x_{n}\right)\right)$ is convergent.

In this case, $\lim _{x \rightarrow c} f(x)=\lim \left(f\left(x_{n}\right)\right)$ whenever $\left(x_{n}\right)$ is a sequence in $A \backslash\{c\}$ with $\lim \left(x_{n}\right)=c$.
Divergence Criterion. Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$ and $c \in D(A)$. Then $\lim _{x \rightarrow c} f(x)$ does not exist if and only if there exists a sequence $\left(x_{n}\right)$ in $A \backslash\{c\}$ convergent to c but $\left(f\left(x_{n}\right)\right)$ does not converge in \mathbb{R}.

Example 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Show that $\lim _{x \rightarrow c} f(x)$ does not exist for every $c \in \mathbb{R}$.

Definition. Let $A \subseteq \mathbb{R}, f: A \rightarrow \mathbb{R}$ and $c \in D(A)$. We say that f diverges to $+\infty$ (resp. $-\infty$) as x tends to c if for any $M>0$, there is $\delta>0$ such that $f(x)>M$ (resp. $f(x)<-M)$ whenever $x \in A$ with $0<|x-c|<\delta$. In this case, we write $\lim _{x \rightarrow c} f(x)=+\infty$ (resp. $\left.\lim _{x \rightarrow c} f(x)=-\infty\right)$.

Example 3. Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not bounded in any neighbourhood at all points?

Example 4. Is there a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow c} f(x)=+\infty$ for any $c \in \mathbb{R}$?

